面向空时目标的误差估计与自适应离散化与降阶建模误差

J. Roth, H. Fischer, J. Thiele, U. Köcher, A. Fau, L. Chamoin, T. Wick
{"title":"面向空时目标的误差估计与自适应离散化与降阶建模误差","authors":"J. Roth, H. Fischer, J. Thiele, U. Köcher, A. Fau, L. Chamoin, T. Wick","doi":"10.23967/admos.2023.026","DOIUrl":null,"url":null,"abstract":"In this presentation, we present a uniform framework in which the dual-weighted residual (DWR) method is used for spatial and temporal discretization error control [1], as well as the control of the reduced order modeling error for the proper orthogonal decomposition (POD). In the first part of this presentation, the DWR method is applied to a space-time formulation of non-stationary Navier-Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor-Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the DWR method for incompressible flow [2] can be extended to a partition of unity based error localization [3, 4]. Our methodology is being substantiated on the two dimensional flow around a cylinder benchmark problem. In the second","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-Time Goal Oriented Error Estimation and Adaptivity for Discretization and Reduced Order Modeling Errors\",\"authors\":\"J. Roth, H. Fischer, J. Thiele, U. Köcher, A. Fau, L. Chamoin, T. Wick\",\"doi\":\"10.23967/admos.2023.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this presentation, we present a uniform framework in which the dual-weighted residual (DWR) method is used for spatial and temporal discretization error control [1], as well as the control of the reduced order modeling error for the proper orthogonal decomposition (POD). In the first part of this presentation, the DWR method is applied to a space-time formulation of non-stationary Navier-Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor-Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the DWR method for incompressible flow [2] can be extended to a partition of unity based error localization [3, 4]. Our methodology is being substantiated on the two dimensional flow around a cylinder benchmark problem. In the second\",\"PeriodicalId\":414984,\"journal\":{\"name\":\"XI International Conference on Adaptive Modeling and Simulation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XI International Conference on Adaptive Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/admos.2023.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本报告中,我们提出了一个统一的框架,其中双加权残差(DWR)方法用于时空离散化误差控制[1],以及适当正交分解(POD)的降阶建模误差控制。在本报告的第一部分,DWR方法应用于非平稳Navier-Stokes流的时空公式。用张量积空时有限元在时间上离散不连续的Galerkin有限元,在空间上离散不稳定的Taylor-Hood有限元对。为了估计感兴趣量的误差并在时间和空间上驱动自适应改进,我们演示了不可压缩流的DWR方法[2]如何扩展到基于单位的误差定位划分[3,4]。我们的方法在圆柱体周围的二维流动基准问题上得到了证实。在第二个
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-Time Goal Oriented Error Estimation and Adaptivity for Discretization and Reduced Order Modeling Errors
In this presentation, we present a uniform framework in which the dual-weighted residual (DWR) method is used for spatial and temporal discretization error control [1], as well as the control of the reduced order modeling error for the proper orthogonal decomposition (POD). In the first part of this presentation, the DWR method is applied to a space-time formulation of non-stationary Navier-Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor-Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the DWR method for incompressible flow [2] can be extended to a partition of unity based error localization [3, 4]. Our methodology is being substantiated on the two dimensional flow around a cylinder benchmark problem. In the second
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信