有界点-匕首交替关系演算的有限变现片段

Yoshiki Nakamura
{"title":"有界点-匕首交替关系演算的有限变现片段","authors":"Yoshiki Nakamura","doi":"10.48550/arXiv.2307.05046","DOIUrl":null,"url":null,"abstract":"We introduce the $k$-variable-occurrence fragment, which is the set of terms having at most $k$ occurrences of variables. We give a sufficient condition for the decidability of the equational theory of the $k$-variable-occurrence fragment using the finiteness of a monoid. As a case study, we prove that for Tarski's calculus of relations with bounded dot-dagger alternation (an analogy of quantifier alternation in first-order logic), the equational theory of the $k$-variable-occurrence fragment is decidable for each $k$.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Finite Variable-Occurrence Fragment of the Calculus of Relations with Bounded Dot-Dagger Alternation\",\"authors\":\"Yoshiki Nakamura\",\"doi\":\"10.48550/arXiv.2307.05046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the $k$-variable-occurrence fragment, which is the set of terms having at most $k$ occurrences of variables. We give a sufficient condition for the decidability of the equational theory of the $k$-variable-occurrence fragment using the finiteness of a monoid. As a case study, we prove that for Tarski's calculus of relations with bounded dot-dagger alternation (an analogy of quantifier alternation in first-order logic), the equational theory of the $k$-variable-occurrence fragment is decidable for each $k$.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.05046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.05046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入$k$变量出现片段,它是变量最多出现$k$的项集合。利用单群的有限性,给出了$k$变发生片段的方程理论的可判别性的充分条件。作为一个实例,我们证明了对于Tarski的有界点-匕首交替(一阶逻辑中量词交替的类比)关系式演算,对于每个$k$, $k$可变片段的等式理论是可决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Finite Variable-Occurrence Fragment of the Calculus of Relations with Bounded Dot-Dagger Alternation
We introduce the $k$-variable-occurrence fragment, which is the set of terms having at most $k$ occurrences of variables. We give a sufficient condition for the decidability of the equational theory of the $k$-variable-occurrence fragment using the finiteness of a monoid. As a case study, we prove that for Tarski's calculus of relations with bounded dot-dagger alternation (an analogy of quantifier alternation in first-order logic), the equational theory of the $k$-variable-occurrence fragment is decidable for each $k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信