并行高斯消去使用OpenMP和MPI

S. McGinn, R. E. Shaw
{"title":"并行高斯消去使用OpenMP和MPI","authors":"S. McGinn, R. E. Shaw","doi":"10.1109/HPCSA.2002.1019151","DOIUrl":null,"url":null,"abstract":"In this paper, we present a parallel algorithm for Gaussian elimination: in both a shared memory environment using OpenMP, and in a distributed memory environment using MPI. Parallel LU and Gaussian algorithms for linear systems are studied extensively, and the the results of examining various load balancing schemes on both platforms are presented. The results show an improvement in many cases over the default implementation.","PeriodicalId":111862,"journal":{"name":"Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Parallel Gaussian elimination using OpenMP and MPI\",\"authors\":\"S. McGinn, R. E. Shaw\",\"doi\":\"10.1109/HPCSA.2002.1019151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a parallel algorithm for Gaussian elimination: in both a shared memory environment using OpenMP, and in a distributed memory environment using MPI. Parallel LU and Gaussian algorithms for linear systems are studied extensively, and the the results of examining various load balancing schemes on both platforms are presented. The results show an improvement in many cases over the default implementation.\",\"PeriodicalId\":111862,\"journal\":{\"name\":\"Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSA.2002.1019151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSA.2002.1019151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在本文中,我们提出了一个并行的高斯消去算法:在共享内存环境中使用OpenMP,在分布式内存环境中使用MPI。本文对线性系统的并行LU算法和高斯算法进行了广泛的研究,并给出了在这两个平台上测试各种负载平衡方案的结果。结果显示,在许多情况下,与默认实现相比有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Gaussian elimination using OpenMP and MPI
In this paper, we present a parallel algorithm for Gaussian elimination: in both a shared memory environment using OpenMP, and in a distributed memory environment using MPI. Parallel LU and Gaussian algorithms for linear systems are studied extensively, and the the results of examining various load balancing schemes on both platforms are presented. The results show an improvement in many cases over the default implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信