{"title":"从点云数据中提取无分类器的电力线","authors":"M. Awrangjeb, Yongsheng Gao, Guojun Lu","doi":"10.1109/DICTA.2018.8615869","DOIUrl":null,"url":null,"abstract":"This paper proposes a classifier-free method for extraction of power line wires from aerial point cloud data. It combines the advantages of both grid- and point-based processing of the input data. In addition to the non-ground point cloud data, the input to the proposed method includes the pylon locations, which are automatically extracted by a previous method. The proposed method first counts the number of wires in a span between the two successive pylons using two masks: vertical and horizontal. Then, the initial wire segments are obtained and refined iteratively. Finally, the initial segments are extended on both ends and each individual wire points are modelled as a 3D polynomial curve. Experimental results show both the object-based completeness and correctness are 97%, while the point-based completeness and correctness are 99% and 88%, respectively.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classifier-Free Extraction of Power Line Wires from Point Cloud Data\",\"authors\":\"M. Awrangjeb, Yongsheng Gao, Guojun Lu\",\"doi\":\"10.1109/DICTA.2018.8615869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a classifier-free method for extraction of power line wires from aerial point cloud data. It combines the advantages of both grid- and point-based processing of the input data. In addition to the non-ground point cloud data, the input to the proposed method includes the pylon locations, which are automatically extracted by a previous method. The proposed method first counts the number of wires in a span between the two successive pylons using two masks: vertical and horizontal. Then, the initial wire segments are obtained and refined iteratively. Finally, the initial segments are extended on both ends and each individual wire points are modelled as a 3D polynomial curve. Experimental results show both the object-based completeness and correctness are 97%, while the point-based completeness and correctness are 99% and 88%, respectively.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classifier-Free Extraction of Power Line Wires from Point Cloud Data
This paper proposes a classifier-free method for extraction of power line wires from aerial point cloud data. It combines the advantages of both grid- and point-based processing of the input data. In addition to the non-ground point cloud data, the input to the proposed method includes the pylon locations, which are automatically extracted by a previous method. The proposed method first counts the number of wires in a span between the two successive pylons using two masks: vertical and horizontal. Then, the initial wire segments are obtained and refined iteratively. Finally, the initial segments are extended on both ends and each individual wire points are modelled as a 3D polynomial curve. Experimental results show both the object-based completeness and correctness are 97%, while the point-based completeness and correctness are 99% and 88%, respectively.