{"title":"基于AdaBoost和决策树的构件鲁棒人脸检测","authors":"K. Ichikawa, T. Mita, O. Hori","doi":"10.1109/FGR.2006.33","DOIUrl":null,"url":null,"abstract":"We present a robust frontal face detection method that enables the identification of face positions in images by combining the results of a low-resolution whole face and individual face parts classifiers. Our approach is to use face parts information and change the identification strategy based on the results from individual face parts classifiers. These classifiers were implemented based on AdaBoost. Moreover, we propose a novel method based on a decision tree to improve performance of face detectors for occluded faces. The proposed decision tree method distinguishes partially occluded faces based on the results from the individual classifies. Preliminarily experiments on a test sample set containing non-occluded faces and occluded faces indicated that our method achieved better results than conventional methods. Actual experimental results containing general images also showed better results","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Component-based robust face detection using AdaBoost and decision tree\",\"authors\":\"K. Ichikawa, T. Mita, O. Hori\",\"doi\":\"10.1109/FGR.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a robust frontal face detection method that enables the identification of face positions in images by combining the results of a low-resolution whole face and individual face parts classifiers. Our approach is to use face parts information and change the identification strategy based on the results from individual face parts classifiers. These classifiers were implemented based on AdaBoost. Moreover, we propose a novel method based on a decision tree to improve performance of face detectors for occluded faces. The proposed decision tree method distinguishes partially occluded faces based on the results from the individual classifies. Preliminarily experiments on a test sample set containing non-occluded faces and occluded faces indicated that our method achieved better results than conventional methods. Actual experimental results containing general images also showed better results\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Component-based robust face detection using AdaBoost and decision tree
We present a robust frontal face detection method that enables the identification of face positions in images by combining the results of a low-resolution whole face and individual face parts classifiers. Our approach is to use face parts information and change the identification strategy based on the results from individual face parts classifiers. These classifiers were implemented based on AdaBoost. Moreover, we propose a novel method based on a decision tree to improve performance of face detectors for occluded faces. The proposed decision tree method distinguishes partially occluded faces based on the results from the individual classifies. Preliminarily experiments on a test sample set containing non-occluded faces and occluded faces indicated that our method achieved better results than conventional methods. Actual experimental results containing general images also showed better results