Juan Augusto Maya, L. Vega, C. Galarza, A. Altieri
{"title":"能量和带宽约束下相关随机过程的分布式检测","authors":"Juan Augusto Maya, L. Vega, C. Galarza, A. Altieri","doi":"10.1109/SAM.2014.6882358","DOIUrl":null,"url":null,"abstract":"We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN). Using Large Deviation Theory (LDT), we compute the probability error exponents of a distributed scheme for detecting a correlated circularly-symmetric complex Gaussian process under the Neyman-Pearson framework. Using an analog scheme, the sensors transmit scaled versions of their measurements several times through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. In the analysis, we consider the energy constraint on each node transmission. We show that the proposed distributed scheme requires relatively few MAC channel uses to achieve the centralized error exponents when detecting correlated Gaussian processes.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distributed detection of correlated random processes under energy and bandwidth constraints\",\"authors\":\"Juan Augusto Maya, L. Vega, C. Galarza, A. Altieri\",\"doi\":\"10.1109/SAM.2014.6882358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN). Using Large Deviation Theory (LDT), we compute the probability error exponents of a distributed scheme for detecting a correlated circularly-symmetric complex Gaussian process under the Neyman-Pearson framework. Using an analog scheme, the sensors transmit scaled versions of their measurements several times through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. In the analysis, we consider the energy constraint on each node transmission. We show that the proposed distributed scheme requires relatively few MAC channel uses to achieve the centralized error exponents when detecting correlated Gaussian processes.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed detection of correlated random processes under energy and bandwidth constraints
We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN). Using Large Deviation Theory (LDT), we compute the probability error exponents of a distributed scheme for detecting a correlated circularly-symmetric complex Gaussian process under the Neyman-Pearson framework. Using an analog scheme, the sensors transmit scaled versions of their measurements several times through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. In the analysis, we consider the energy constraint on each node transmission. We show that the proposed distributed scheme requires relatively few MAC channel uses to achieve the centralized error exponents when detecting correlated Gaussian processes.