无约束环境下计算高效虹膜提取方法

Yu Chen, M. Adjouadi, A. Barreto, N. Rishe, J. Andrian
{"title":"无约束环境下计算高效虹膜提取方法","authors":"Yu Chen, M. Adjouadi, A. Barreto, N. Rishe, J. Andrian","doi":"10.1109/BTAS.2009.5339024","DOIUrl":null,"url":null,"abstract":"This research introduces a noise-resistant and computational efficient segmentation approach towards less constrained iris recognition. The UBIRIS.v2 database which contains close-up eye images taken under visible light is used to test the proposed algorithm. The proposed segmentation approach is based on a modified and fast Hough transform augmented with a newly developed strategy to define iris boundaries with multi-arcs and multi-lines. This optimized iris segmentation approach achieves excellent results in both accuracy (2% error) and execution speed (≤0.5s / image) using a 2.4GHz Intel® Q6600 processor with 2GB of RAM. This 2% error is an Exclusive-OR function in term of disagreeing pixels between the correct iris considered by the NICE.I committee and the segmented results from the proposed approach. The segmentation performance was independently evaluated in the “Noisy Iris Challenge Evaluation”, involving 97 participants worldwide, and ranking this research group in the top 6.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A computational efficient iris extraction approach in unconstrained environments\",\"authors\":\"Yu Chen, M. Adjouadi, A. Barreto, N. Rishe, J. Andrian\",\"doi\":\"10.1109/BTAS.2009.5339024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research introduces a noise-resistant and computational efficient segmentation approach towards less constrained iris recognition. The UBIRIS.v2 database which contains close-up eye images taken under visible light is used to test the proposed algorithm. The proposed segmentation approach is based on a modified and fast Hough transform augmented with a newly developed strategy to define iris boundaries with multi-arcs and multi-lines. This optimized iris segmentation approach achieves excellent results in both accuracy (2% error) and execution speed (≤0.5s / image) using a 2.4GHz Intel® Q6600 processor with 2GB of RAM. This 2% error is an Exclusive-OR function in term of disagreeing pixels between the correct iris considered by the NICE.I committee and the segmented results from the proposed approach. The segmentation performance was independently evaluated in the “Noisy Iris Challenge Evaluation”, involving 97 participants worldwide, and ranking this research group in the top 6.\",\"PeriodicalId\":325900,\"journal\":{\"name\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2009.5339024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本研究引入了一种抗噪声和计算效率高的分割方法,用于较少约束的虹膜识别。UBIRIS。使用V2数据库对该算法进行了测试,该数据库包含了人眼在可见光下拍摄的特写图像。该分割方法基于改进的快速霍夫变换,增强了一种新的多弧和多线虹膜边界定义策略。这种优化的虹膜分割方法使用2.4GHz Intel®Q6600处理器和2GB RAM,在准确率(2%误差)和执行速度(≤0.5s /图像)方面都取得了优异的效果。这2%的误差是一个异或函数,就NICE所考虑的正确虹膜之间的不一致像素而言。委员会和拟议方法的分段结果。在“嘈杂虹膜挑战评估”中独立评估分割性能,涉及全球97名参与者,该课题组排名前6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational efficient iris extraction approach in unconstrained environments
This research introduces a noise-resistant and computational efficient segmentation approach towards less constrained iris recognition. The UBIRIS.v2 database which contains close-up eye images taken under visible light is used to test the proposed algorithm. The proposed segmentation approach is based on a modified and fast Hough transform augmented with a newly developed strategy to define iris boundaries with multi-arcs and multi-lines. This optimized iris segmentation approach achieves excellent results in both accuracy (2% error) and execution speed (≤0.5s / image) using a 2.4GHz Intel® Q6600 processor with 2GB of RAM. This 2% error is an Exclusive-OR function in term of disagreeing pixels between the correct iris considered by the NICE.I committee and the segmented results from the proposed approach. The segmentation performance was independently evaluated in the “Noisy Iris Challenge Evaluation”, involving 97 participants worldwide, and ranking this research group in the top 6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信