基于隐马尔可夫随机场的地理空间对象聚类

Makoto Sato, S. Imahara
{"title":"基于隐马尔可夫随机场的地理空间对象聚类","authors":"Makoto Sato, S. Imahara","doi":"10.1109/ICDM.2008.70","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of clustering objects located and correlated geographically and containing multiple attributes. For the clustering problem, it is necessary to consider both the similarities of the attributes and the spatial dependencies of the objects. A new clustering framework using hidden Markov random fields (HMRFs) and Gaussian distributions and new potential models of HMRFs for irregularly located geospatial objects are proposed in this paper. Experimental results for systematic data and two real-world data showed the availability of the proposed algorithms.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"40 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering Geospatial Objects via Hidden Markov Random Fields\",\"authors\":\"Makoto Sato, S. Imahara\",\"doi\":\"10.1109/ICDM.2008.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of clustering objects located and correlated geographically and containing multiple attributes. For the clustering problem, it is necessary to consider both the similarities of the attributes and the spatial dependencies of the objects. A new clustering framework using hidden Markov random fields (HMRFs) and Gaussian distributions and new potential models of HMRFs for irregularly located geospatial objects are proposed in this paper. Experimental results for systematic data and two real-world data showed the availability of the proposed algorithms.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"40 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了包含多个属性的地理位置相关对象的聚类问题。对于聚类问题,需要同时考虑属性的相似性和对象的空间依赖性。本文提出了一种基于隐马尔可夫随机场和高斯分布的聚类框架,以及一种新的隐马尔可夫随机场潜在模型。系统数据和两个实际数据的实验结果表明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering Geospatial Objects via Hidden Markov Random Fields
This paper addresses the problem of clustering objects located and correlated geographically and containing multiple attributes. For the clustering problem, it is necessary to consider both the similarities of the attributes and the spatial dependencies of the objects. A new clustering framework using hidden Markov random fields (HMRFs) and Gaussian distributions and new potential models of HMRFs for irregularly located geospatial objects are proposed in this paper. Experimental results for systematic data and two real-world data showed the availability of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信