iQAN:在多核架构上快速准确的向量搜索,具有高效的查询并行性

Zhen Peng, Minjia Zhang, K. Li, R. Jin, Bin Ren
{"title":"iQAN:在多核架构上快速准确的向量搜索,具有高效的查询并行性","authors":"Zhen Peng, Minjia Zhang, K. Li, R. Jin, Bin Ren","doi":"10.1145/3572848.3577527","DOIUrl":null,"url":null,"abstract":"Vector search has drawn a rapid increase of interest in the research community due to its application in novel AI applications. Maximizing its performance is essential for many tasks but remains preliminary understood. In this work, we investigate the root causes of the scalability bottleneck of using intra-query parallelism to speedup the state-of-the-art graph-based vector search systems on multi-core architectures. Our in-depth analysis reveals several scalability challenges from both system and algorithm perspectives. Based on the insights, we propose iQAN, a parallel search algorithm with a set of optimizations that boost convergence, avoid redundant computations, and mitigate synchronization overhead. Our evaluation results on a wide range of real-world datasets show that iQAN achieves up to 37.7× and 76.6× lower latency than state-of-the-art sequential baselines on datasets ranging from a million to a hundred million datasets. We also show that iQAN achieves outstanding scalability as the graph size or the accuracy target increases, allowing it to outperform the state-of-the-art baseline on two billion-scale datasets by up to 16.0× with up to 64 cores.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"iQAN: Fast and Accurate Vector Search with Efficient Intra-Query Parallelism on Multi-Core Architectures\",\"authors\":\"Zhen Peng, Minjia Zhang, K. Li, R. Jin, Bin Ren\",\"doi\":\"10.1145/3572848.3577527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector search has drawn a rapid increase of interest in the research community due to its application in novel AI applications. Maximizing its performance is essential for many tasks but remains preliminary understood. In this work, we investigate the root causes of the scalability bottleneck of using intra-query parallelism to speedup the state-of-the-art graph-based vector search systems on multi-core architectures. Our in-depth analysis reveals several scalability challenges from both system and algorithm perspectives. Based on the insights, we propose iQAN, a parallel search algorithm with a set of optimizations that boost convergence, avoid redundant computations, and mitigate synchronization overhead. Our evaluation results on a wide range of real-world datasets show that iQAN achieves up to 37.7× and 76.6× lower latency than state-of-the-art sequential baselines on datasets ranging from a million to a hundred million datasets. We also show that iQAN achieves outstanding scalability as the graph size or the accuracy target increases, allowing it to outperform the state-of-the-art baseline on two billion-scale datasets by up to 16.0× with up to 64 cores.\",\"PeriodicalId\":233744,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572848.3577527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

向量搜索由于其在新型人工智能应用中的应用而引起了研究界的迅速关注。最大化它的性能对于许多任务来说是必不可少的,但仍处于初步了解阶段。在这项工作中,我们研究了在多核架构上使用查询内并行性来加速最先进的基于图的矢量搜索系统的可扩展性瓶颈的根本原因。我们的深入分析从系统和算法的角度揭示了几个可扩展性挑战。基于这些见解,我们提出了iQAN,这是一种并行搜索算法,具有一系列优化,可以提高收敛性,避免冗余计算,并减轻同步开销。我们在广泛的真实数据集上的评估结果表明,iQAN在100万到1亿数据集上的延迟比最先进的顺序基线低37.7倍和76.6倍。我们还表明,随着图形大小或精度目标的增加,iQAN实现了出色的可扩展性,使其在多达64个内核的情况下,在20亿规模数据集上的性能优于最先进的基线,最高可达16.0倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
iQAN: Fast and Accurate Vector Search with Efficient Intra-Query Parallelism on Multi-Core Architectures
Vector search has drawn a rapid increase of interest in the research community due to its application in novel AI applications. Maximizing its performance is essential for many tasks but remains preliminary understood. In this work, we investigate the root causes of the scalability bottleneck of using intra-query parallelism to speedup the state-of-the-art graph-based vector search systems on multi-core architectures. Our in-depth analysis reveals several scalability challenges from both system and algorithm perspectives. Based on the insights, we propose iQAN, a parallel search algorithm with a set of optimizations that boost convergence, avoid redundant computations, and mitigate synchronization overhead. Our evaluation results on a wide range of real-world datasets show that iQAN achieves up to 37.7× and 76.6× lower latency than state-of-the-art sequential baselines on datasets ranging from a million to a hundred million datasets. We also show that iQAN achieves outstanding scalability as the graph size or the accuracy target increases, allowing it to outperform the state-of-the-art baseline on two billion-scale datasets by up to 16.0× with up to 64 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信