离散时间滑模控制中基于双曲正切的切换逼近律

P. Leśniewski, A. Bartoszewicz
{"title":"离散时间滑模控制中基于双曲正切的切换逼近律","authors":"P. Leśniewski, A. Bartoszewicz","doi":"10.1109/RASM.2015.7154589","DOIUrl":null,"url":null,"abstract":"In this paper we consider the reaching law approach to the sliding mode control of discrete time systems. We present a reaching law based on the hyperbolic tangent trigonometric function. We begin by analyzing the case of nominal systems, and then extend the results to the problem of perturbed systems, that are subjected to disturbances and parameter uncertainties. We show, that for both scenarios the sliding mode controller designed according to the proposed reaching law enforces the quasi-sliding mode defined as changing the sign of the sliding variable in each consecutive control step, while maintaining its value in some a priori known vicinity of zero. We compare our solution to the most popular, constant plus proportional reaching law, and demonstrate, that it offers faster convergence and better robustness.","PeriodicalId":297041,"journal":{"name":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hyperbolic tangent based switching reaching law for discrete time sliding mode control of dynamical systems\",\"authors\":\"P. Leśniewski, A. Bartoszewicz\",\"doi\":\"10.1109/RASM.2015.7154589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the reaching law approach to the sliding mode control of discrete time systems. We present a reaching law based on the hyperbolic tangent trigonometric function. We begin by analyzing the case of nominal systems, and then extend the results to the problem of perturbed systems, that are subjected to disturbances and parameter uncertainties. We show, that for both scenarios the sliding mode controller designed according to the proposed reaching law enforces the quasi-sliding mode defined as changing the sign of the sliding variable in each consecutive control step, while maintaining its value in some a priori known vicinity of zero. We compare our solution to the most popular, constant plus proportional reaching law, and demonstrate, that it offers faster convergence and better robustness.\",\"PeriodicalId\":297041,\"journal\":{\"name\":\"2015 International Workshop on Recent Advances in Sliding Modes (RASM)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Recent Advances in Sliding Modes (RASM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RASM.2015.7154589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASM.2015.7154589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文研究离散时间系统滑模控制的逼近律方法。给出了一个基于双曲正切三角函数的趋近律。我们首先分析名义系统的情况,然后将结果推广到受干扰和参数不确定性影响的摄动系统的问题。我们证明,对于这两种情况,根据所提出的趋近律设计的滑模控制器强制准滑模定义为在每个连续控制步骤中改变滑动变量的符号,同时保持其值在某个先验已知的零附近。我们将我们的解决方案与最流行的常数加比例趋近律进行比较,并证明它提供了更快的收敛和更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolic tangent based switching reaching law for discrete time sliding mode control of dynamical systems
In this paper we consider the reaching law approach to the sliding mode control of discrete time systems. We present a reaching law based on the hyperbolic tangent trigonometric function. We begin by analyzing the case of nominal systems, and then extend the results to the problem of perturbed systems, that are subjected to disturbances and parameter uncertainties. We show, that for both scenarios the sliding mode controller designed according to the proposed reaching law enforces the quasi-sliding mode defined as changing the sign of the sliding variable in each consecutive control step, while maintaining its value in some a priori known vicinity of zero. We compare our solution to the most popular, constant plus proportional reaching law, and demonstrate, that it offers faster convergence and better robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信