A. Liopa-Tsakalidi, Vasileios Thomopoulos, P. Barouchas, A. Kavga, A. Boursianis, S. Goudos, G. Kalamaras, A. Gotsis, K. Maliatsos
{"title":"基于NB-IoT的葡萄园智能灌溉平台","authors":"A. Liopa-Tsakalidi, Vasileios Thomopoulos, P. Barouchas, A. Kavga, A. Boursianis, S. Goudos, G. Kalamaras, A. Gotsis, K. Maliatsos","doi":"10.1109/MOCAST52088.2021.9493381","DOIUrl":null,"url":null,"abstract":"A novel prototype NB-IoT-based quasi-smart water management platform for irrigation is proposed. The prototype has been deployed in a vineyard in Peta village, Greece, as part of the AREThOU5A project. An IoT framework for regularly and accurately tracking the status of soil hydration and reporting it to a centralized entity for further processing since water needs are directly related to soil moisture is proposed. The framework is based on specialized IoT hardware that includes low-cost microcontrollers with integrated sensor interfaces and telecommunication modems, open-source applications, open and standardized data transfer protocols, with low capital and operating costs. In the vineyard, an IoT end-node have been placed. Each node: i) collects soil moisture and temperature samples at a depth of 20 cm, ii) is battery-powered and has a battery life of several months on a single charge, and iii) connects to the system back-end via NB-IoT. The sensor measurements from the IoT nodes are forwarded to a cloud-based infrastructure using the Constrained Application Protocol (CoAP)/IPv6 protocol using a public mobile network. Data is maintained on a cloud backend and can be accessed in real-time via dashboards from any Internet-connected individual. In terms of hardware integration, operating solutions, networking and connectivity support, the proposed platform offers numerous novel features.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A NB-IoT based platform for smart irrigation in vineyard\",\"authors\":\"A. Liopa-Tsakalidi, Vasileios Thomopoulos, P. Barouchas, A. Kavga, A. Boursianis, S. Goudos, G. Kalamaras, A. Gotsis, K. Maliatsos\",\"doi\":\"10.1109/MOCAST52088.2021.9493381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel prototype NB-IoT-based quasi-smart water management platform for irrigation is proposed. The prototype has been deployed in a vineyard in Peta village, Greece, as part of the AREThOU5A project. An IoT framework for regularly and accurately tracking the status of soil hydration and reporting it to a centralized entity for further processing since water needs are directly related to soil moisture is proposed. The framework is based on specialized IoT hardware that includes low-cost microcontrollers with integrated sensor interfaces and telecommunication modems, open-source applications, open and standardized data transfer protocols, with low capital and operating costs. In the vineyard, an IoT end-node have been placed. Each node: i) collects soil moisture and temperature samples at a depth of 20 cm, ii) is battery-powered and has a battery life of several months on a single charge, and iii) connects to the system back-end via NB-IoT. The sensor measurements from the IoT nodes are forwarded to a cloud-based infrastructure using the Constrained Application Protocol (CoAP)/IPv6 protocol using a public mobile network. Data is maintained on a cloud backend and can be accessed in real-time via dashboards from any Internet-connected individual. In terms of hardware integration, operating solutions, networking and connectivity support, the proposed platform offers numerous novel features.\",\"PeriodicalId\":146990,\"journal\":{\"name\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST52088.2021.9493381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A NB-IoT based platform for smart irrigation in vineyard
A novel prototype NB-IoT-based quasi-smart water management platform for irrigation is proposed. The prototype has been deployed in a vineyard in Peta village, Greece, as part of the AREThOU5A project. An IoT framework for regularly and accurately tracking the status of soil hydration and reporting it to a centralized entity for further processing since water needs are directly related to soil moisture is proposed. The framework is based on specialized IoT hardware that includes low-cost microcontrollers with integrated sensor interfaces and telecommunication modems, open-source applications, open and standardized data transfer protocols, with low capital and operating costs. In the vineyard, an IoT end-node have been placed. Each node: i) collects soil moisture and temperature samples at a depth of 20 cm, ii) is battery-powered and has a battery life of several months on a single charge, and iii) connects to the system back-end via NB-IoT. The sensor measurements from the IoT nodes are forwarded to a cloud-based infrastructure using the Constrained Application Protocol (CoAP)/IPv6 protocol using a public mobile network. Data is maintained on a cloud backend and can be accessed in real-time via dashboards from any Internet-connected individual. In terms of hardware integration, operating solutions, networking and connectivity support, the proposed platform offers numerous novel features.