Clark-Y翼型提升阻升比吹吸位置优化参数化研究

M. Ohashi, Y. Morita, Shiho Hirokawa, K. Fukagata, N. Tokugawa
{"title":"Clark-Y翼型提升阻升比吹吸位置优化参数化研究","authors":"M. Ohashi, Y. Morita, Shiho Hirokawa, K. Fukagata, N. Tokugawa","doi":"10.1115/ajkfluids2019-5067","DOIUrl":null,"url":null,"abstract":"\n In this study, Reynolds-averaged Navier-Stokes simulation (RANS) of the uniform blowing and suction (UB/US) control on a Clark-Y airfoil was performed aiming at improving an airfoil performance by friction drag reduction. First, the control effect when only the uniform blowing control or uniform suction control is applied on the airfoil surface was investigated by changing the control locations. The blowing or suction velocity was 0.14% of the free-stream velocity and the blowing/suction area was set at four different locations from the leading edge to the trailing edge on both the upper and lower surfaces. The Reynolds number based on the chord length is 1.5 × 106. The angle of attack is set to 0°. It was found that friction drag is decreased/increased by single UB/US control. It was also found that the lift-to-drag ratio improved with UB on the lower surface or US on the upper surface, and decreased with UB on the upper surface or US on the lower surface. In the combined control of UB and US, the blowing and suction velocity was 0.14% or 0.26% of the free-stream velocity and the locations of blowing/suction and flow conditions were the same as those in the cases with either UB or US. It seemed that the lift-to-drag ratio was improved by the combined control of UB on the lower surface and US on the upper surface. In particular, the lift-to-drag ratio was most improved by US on the lower rear surface and UB on the upper rear surface.","PeriodicalId":314304,"journal":{"name":"Volume 1: Fluid Mechanics","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parametric Study for Optimization of Blowing and Suction Locations for Improving Lift-to-Drag Ratio on a Clark-Y Airfoil\",\"authors\":\"M. Ohashi, Y. Morita, Shiho Hirokawa, K. Fukagata, N. Tokugawa\",\"doi\":\"10.1115/ajkfluids2019-5067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, Reynolds-averaged Navier-Stokes simulation (RANS) of the uniform blowing and suction (UB/US) control on a Clark-Y airfoil was performed aiming at improving an airfoil performance by friction drag reduction. First, the control effect when only the uniform blowing control or uniform suction control is applied on the airfoil surface was investigated by changing the control locations. The blowing or suction velocity was 0.14% of the free-stream velocity and the blowing/suction area was set at four different locations from the leading edge to the trailing edge on both the upper and lower surfaces. The Reynolds number based on the chord length is 1.5 × 106. The angle of attack is set to 0°. It was found that friction drag is decreased/increased by single UB/US control. It was also found that the lift-to-drag ratio improved with UB on the lower surface or US on the upper surface, and decreased with UB on the upper surface or US on the lower surface. In the combined control of UB and US, the blowing and suction velocity was 0.14% or 0.26% of the free-stream velocity and the locations of blowing/suction and flow conditions were the same as those in the cases with either UB or US. It seemed that the lift-to-drag ratio was improved by the combined control of UB on the lower surface and US on the upper surface. In particular, the lift-to-drag ratio was most improved by US on the lower rear surface and UB on the upper rear surface.\",\"PeriodicalId\":314304,\"journal\":{\"name\":\"Volume 1: Fluid Mechanics\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,雷诺平均纳维-斯托克斯模拟(RANS)的均匀吹风和吸力(UB/US)控制的克拉克- y翼型进行了旨在提高翼型性能的摩擦阻力减少。首先,通过改变控制位置,研究了在翼型表面仅施加均匀吹气控制或均匀吸力控制时的控制效果。吹吸速度为自由流速度的0.14%,上下表面从前缘到尾缘的4个不同位置设置吹吸区域。基于弦长计算的雷诺数为1.5 × 106。攻角设为0°。结果表明,单UB/US控制可减小/增大摩擦阻力。下表面加UB或上表面加US时升阻比提高,上表面加UB或下表面加US时升阻比降低。在UB和US联合控制下,吹吸速度分别为自由流速度的0.14%和0.26%,吹吸位置和流动条件与UB和US的情况相同。下表面UB和上表面US的联合控制似乎提高了升阻比。其中,下后表面的US和上后表面的UB对升阻比的改善最为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric Study for Optimization of Blowing and Suction Locations for Improving Lift-to-Drag Ratio on a Clark-Y Airfoil
In this study, Reynolds-averaged Navier-Stokes simulation (RANS) of the uniform blowing and suction (UB/US) control on a Clark-Y airfoil was performed aiming at improving an airfoil performance by friction drag reduction. First, the control effect when only the uniform blowing control or uniform suction control is applied on the airfoil surface was investigated by changing the control locations. The blowing or suction velocity was 0.14% of the free-stream velocity and the blowing/suction area was set at four different locations from the leading edge to the trailing edge on both the upper and lower surfaces. The Reynolds number based on the chord length is 1.5 × 106. The angle of attack is set to 0°. It was found that friction drag is decreased/increased by single UB/US control. It was also found that the lift-to-drag ratio improved with UB on the lower surface or US on the upper surface, and decreased with UB on the upper surface or US on the lower surface. In the combined control of UB and US, the blowing and suction velocity was 0.14% or 0.26% of the free-stream velocity and the locations of blowing/suction and flow conditions were the same as those in the cases with either UB or US. It seemed that the lift-to-drag ratio was improved by the combined control of UB on the lower surface and US on the upper surface. In particular, the lift-to-drag ratio was most improved by US on the lower rear surface and UB on the upper rear surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信