高效主动轮廓高斯分布拟合能量

Hui Wang, Ting-Zhu Huang
{"title":"高效主动轮廓高斯分布拟合能量","authors":"Hui Wang, Ting-Zhu Huang","doi":"10.1109/ICIST.2013.6747720","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient active contour with Gaussian distribution fitting energy is proposed for image segmentation. We introduce the Gaussian distribution to construct the fitting energy, which drives the active contour toward the object boundaries. In order to protect the smoothness property and the stability, a reaction diffusion approach is borrowed to design a two-stage scheme, which eliminates the procedure of re-initialization of traditional level set methods and improves the segmentation quality effectively.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient active contour with Gaussian distribution fitting energy\",\"authors\":\"Hui Wang, Ting-Zhu Huang\",\"doi\":\"10.1109/ICIST.2013.6747720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient active contour with Gaussian distribution fitting energy is proposed for image segmentation. We introduce the Gaussian distribution to construct the fitting energy, which drives the active contour toward the object boundaries. In order to protect the smoothness property and the stability, a reaction diffusion approach is borrowed to design a two-stage scheme, which eliminates the procedure of re-initialization of traditional level set methods and improves the segmentation quality effectively.\",\"PeriodicalId\":415759,\"journal\":{\"name\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2013.6747720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种高效的主动轮廓高斯分布拟合能量图像分割方法。我们引入高斯分布来构建拟合能量,从而驱动主动轮廓向物体边界移动。为了保护平滑性和稳定性,我们借用反应扩散方法设计了两阶段方案,省去了传统水平集方法的重新初始化过程,有效提高了分割质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient active contour with Gaussian distribution fitting energy
In this paper, an efficient active contour with Gaussian distribution fitting energy is proposed for image segmentation. We introduce the Gaussian distribution to construct the fitting energy, which drives the active contour toward the object boundaries. In order to protect the smoothness property and the stability, a reaction diffusion approach is borrowed to design a two-stage scheme, which eliminates the procedure of re-initialization of traditional level set methods and improves the segmentation quality effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信