Yong Xie, Z. Tao, Shao Wen, J. Qu, Huan Hai, Tian Chuanyang
{"title":"基于GF-1侧摆角的辐射交叉标定","authors":"Yong Xie, Z. Tao, Shao Wen, J. Qu, Huan Hai, Tian Chuanyang","doi":"10.32604/JIOT.2019.05859","DOIUrl":null,"url":null,"abstract":"Radiation cross-calibration is an effective method to check and verify the accuracy and stability of sensor measurements. Satellites with high radiation accuracy are used to calibrate satellites with low radiation accuracy. In order to ensure the reliability of the radiation cross-calibration method, we propose to obtain the gain and offset of the GaoFen-1 satellite by linear regression after the radiation cross-calibration of the satellite with low precision and compare with the official coefficient. Finally, we get the relationship between the error in radiation cross-calibration results and side swing angle. The linear correction coefficients of each band are: 0.618, 0.625, 0.512 and 0.474. The results show that after the method is corrected by the linear correction coefficient, the error caused by the side swing angle during the cross-calibration of the orbital radiation is reduced. The accuracy of radiation cross-calibration is improved, the frequency of calibration is improved and the requirements of remote sensing applications in the new era are adapted.","PeriodicalId":345256,"journal":{"name":"Journal on Internet of Things","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation Cross Calibration Based on GF-1 Side Swing Angle\",\"authors\":\"Yong Xie, Z. Tao, Shao Wen, J. Qu, Huan Hai, Tian Chuanyang\",\"doi\":\"10.32604/JIOT.2019.05859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiation cross-calibration is an effective method to check and verify the accuracy and stability of sensor measurements. Satellites with high radiation accuracy are used to calibrate satellites with low radiation accuracy. In order to ensure the reliability of the radiation cross-calibration method, we propose to obtain the gain and offset of the GaoFen-1 satellite by linear regression after the radiation cross-calibration of the satellite with low precision and compare with the official coefficient. Finally, we get the relationship between the error in radiation cross-calibration results and side swing angle. The linear correction coefficients of each band are: 0.618, 0.625, 0.512 and 0.474. The results show that after the method is corrected by the linear correction coefficient, the error caused by the side swing angle during the cross-calibration of the orbital radiation is reduced. The accuracy of radiation cross-calibration is improved, the frequency of calibration is improved and the requirements of remote sensing applications in the new era are adapted.\",\"PeriodicalId\":345256,\"journal\":{\"name\":\"Journal on Internet of Things\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/JIOT.2019.05859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/JIOT.2019.05859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radiation Cross Calibration Based on GF-1 Side Swing Angle
Radiation cross-calibration is an effective method to check and verify the accuracy and stability of sensor measurements. Satellites with high radiation accuracy are used to calibrate satellites with low radiation accuracy. In order to ensure the reliability of the radiation cross-calibration method, we propose to obtain the gain and offset of the GaoFen-1 satellite by linear regression after the radiation cross-calibration of the satellite with low precision and compare with the official coefficient. Finally, we get the relationship between the error in radiation cross-calibration results and side swing angle. The linear correction coefficients of each band are: 0.618, 0.625, 0.512 and 0.474. The results show that after the method is corrected by the linear correction coefficient, the error caused by the side swing angle during the cross-calibration of the orbital radiation is reduced. The accuracy of radiation cross-calibration is improved, the frequency of calibration is improved and the requirements of remote sensing applications in the new era are adapted.