802.11ax站的多用户分布式频谱接入方法

Dheeraj Kotagiri, Koichi Nihei, Tansheng Li
{"title":"802.11ax站的多用户分布式频谱接入方法","authors":"Dheeraj Kotagiri, Koichi Nihei, Tansheng Li","doi":"10.1109/ICCCN49398.2020.9209737","DOIUrl":null,"url":null,"abstract":"The 802.11ax MAC incorporates Multi-User (MU) Orthogonal Frequency Division Multiple Access (OFDMA) based uplink communication where stations access spectrum by randomly selecting one of the available sub-channel, called Resource Unit (RU). This paper proposes a distributed RU selection method using Convolution Neural Network (CNN) based Deep Reinforcement Learning (C-DRL). The proposed method works in tandem with the standard CSMA/CA protocol where CSMA/CA determines when a transmission opportunity is available to a station while the proposed method is used to select the RU for transmitting the data. Specifically, each station locally trains its CNN in an online manner solely based on energy detection and acknowledgment packets. The proposed method achieves 81:18% higher average throughput and 42:37% lower latency compared to standard MU-OFDMA MAC protocol for a single Access Point network with a variable number of stations.","PeriodicalId":137835,"journal":{"name":"2020 29th International Conference on Computer Communications and Networks (ICCCN)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-User Distributed Spectrum Access Method for 802.11ax Stations\",\"authors\":\"Dheeraj Kotagiri, Koichi Nihei, Tansheng Li\",\"doi\":\"10.1109/ICCCN49398.2020.9209737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 802.11ax MAC incorporates Multi-User (MU) Orthogonal Frequency Division Multiple Access (OFDMA) based uplink communication where stations access spectrum by randomly selecting one of the available sub-channel, called Resource Unit (RU). This paper proposes a distributed RU selection method using Convolution Neural Network (CNN) based Deep Reinforcement Learning (C-DRL). The proposed method works in tandem with the standard CSMA/CA protocol where CSMA/CA determines when a transmission opportunity is available to a station while the proposed method is used to select the RU for transmitting the data. Specifically, each station locally trains its CNN in an online manner solely based on energy detection and acknowledgment packets. The proposed method achieves 81:18% higher average throughput and 42:37% lower latency compared to standard MU-OFDMA MAC protocol for a single Access Point network with a variable number of stations.\",\"PeriodicalId\":137835,\"journal\":{\"name\":\"2020 29th International Conference on Computer Communications and Networks (ICCCN)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th International Conference on Computer Communications and Networks (ICCCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN49398.2020.9209737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th International Conference on Computer Communications and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN49398.2020.9209737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

802.11ax MAC结合了基于多用户(MU)正交频分多址(OFDMA)的上行通信,其中站点通过随机选择一个可用的子信道(称为资源单元(RU))来访问频谱。本文提出了一种基于卷积神经网络(CNN)的深度强化学习(C-DRL)的分布式RU选择方法。所提出的方法与标准CSMA/CA协议协同工作,其中CSMA/CA决定何时对站点可用传输机会,而所提出的方法用于选择用于传输数据的RU。具体来说,每个电视台只基于能量检测和确认包,以在线方式本地训练其CNN。对于具有可变站数的单个接入点网络,与标准MU-OFDMA MAC协议相比,该方法的平均吞吐量提高81:18%,延迟降低42:37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-User Distributed Spectrum Access Method for 802.11ax Stations
The 802.11ax MAC incorporates Multi-User (MU) Orthogonal Frequency Division Multiple Access (OFDMA) based uplink communication where stations access spectrum by randomly selecting one of the available sub-channel, called Resource Unit (RU). This paper proposes a distributed RU selection method using Convolution Neural Network (CNN) based Deep Reinforcement Learning (C-DRL). The proposed method works in tandem with the standard CSMA/CA protocol where CSMA/CA determines when a transmission opportunity is available to a station while the proposed method is used to select the RU for transmitting the data. Specifically, each station locally trains its CNN in an online manner solely based on energy detection and acknowledgment packets. The proposed method achieves 81:18% higher average throughput and 42:37% lower latency compared to standard MU-OFDMA MAC protocol for a single Access Point network with a variable number of stations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信