基于密度的MR图像乳腺肿瘤检测

N. Shrivastava, J. Bharti
{"title":"基于密度的MR图像乳腺肿瘤检测","authors":"N. Shrivastava, J. Bharti","doi":"10.1142/S0219467822500012","DOIUrl":null,"url":null,"abstract":"Breast cancer is dangerous in women. It is generally found after the symptoms appear. Detecting the breast cancer at an early stage and understanding the treatment are the most important strategies to prevent death from cancer. Generally, for detection of breast cancer, breast Magnetic Resonance Image (MRI) takes place. It is one of the best approaches to detect tumor in women. In this research paper, a combination of selection methods for seed region growing image segmentation is suggested to detect breast tumor. The suggested method has been divided into following parts: First, the pre-processing of breast image is performed. Second, the automatic threshold for binarization process is calculated. Third, the number of seed points and its position in the breast image are determined automatically using density of pixels value. Fourth, a method for calculation of threshold value is proposed for the purpose of region creation in seed region growing. For the evaluation purpose, the proposed method was applied and tested on the RIDER MRI breast dataset from National Biomedical Imaging Archive (NBIA). After the test was performed, it was observed that proposed algorithm gives 90% accuracy, 88% True Negative Fraction, 91% True Positive Fraction, 10% Misclassification Rate, 94% Precision and 86% Relative Overlap which is better than other existing methods. It not only gives better evaluation measure but also provides segmentation method for multiple tumor detection.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Breast Tumor Detection in MR Images Based on Density\",\"authors\":\"N. Shrivastava, J. Bharti\",\"doi\":\"10.1142/S0219467822500012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is dangerous in women. It is generally found after the symptoms appear. Detecting the breast cancer at an early stage and understanding the treatment are the most important strategies to prevent death from cancer. Generally, for detection of breast cancer, breast Magnetic Resonance Image (MRI) takes place. It is one of the best approaches to detect tumor in women. In this research paper, a combination of selection methods for seed region growing image segmentation is suggested to detect breast tumor. The suggested method has been divided into following parts: First, the pre-processing of breast image is performed. Second, the automatic threshold for binarization process is calculated. Third, the number of seed points and its position in the breast image are determined automatically using density of pixels value. Fourth, a method for calculation of threshold value is proposed for the purpose of region creation in seed region growing. For the evaluation purpose, the proposed method was applied and tested on the RIDER MRI breast dataset from National Biomedical Imaging Archive (NBIA). After the test was performed, it was observed that proposed algorithm gives 90% accuracy, 88% True Negative Fraction, 91% True Positive Fraction, 10% Misclassification Rate, 94% Precision and 86% Relative Overlap which is better than other existing methods. It not only gives better evaluation measure but also provides segmentation method for multiple tumor detection.\",\"PeriodicalId\":177479,\"journal\":{\"name\":\"Int. J. Image Graph.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Image Graph.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219467822500012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219467822500012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

乳腺癌对女性来说是危险的。一般在症状出现后才发现。早期发现乳腺癌并了解治疗方法是预防癌症死亡的最重要策略。一般来说,为了检测乳腺癌,需要进行乳房磁共振成像(MRI)。这是检测女性肿瘤的最佳方法之一。本文提出了一种结合选择方法的种子区域生长图像分割方法来检测乳腺肿瘤。该方法主要分为以下几个部分:首先,对乳房图像进行预处理。其次,计算二值化过程的自动阈值;第三,利用像素密度值自动确定乳房图像中的种子点个数和位置;第四,提出了一种用于种子区域生长中区域创建的阈值计算方法。为了评估目的,将所提出的方法应用于美国国家生物医学成像档案馆(NBIA)的RIDER MRI乳房数据集并进行了测试。经过测试,该算法的准确率为90%,真负分数为88%,真正分数为91%,误分类率为10%,精度为94%,相对重叠率为86%,优于现有方法。它不仅提供了更好的评价指标,而且为多发肿瘤的检测提供了分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast Tumor Detection in MR Images Based on Density
Breast cancer is dangerous in women. It is generally found after the symptoms appear. Detecting the breast cancer at an early stage and understanding the treatment are the most important strategies to prevent death from cancer. Generally, for detection of breast cancer, breast Magnetic Resonance Image (MRI) takes place. It is one of the best approaches to detect tumor in women. In this research paper, a combination of selection methods for seed region growing image segmentation is suggested to detect breast tumor. The suggested method has been divided into following parts: First, the pre-processing of breast image is performed. Second, the automatic threshold for binarization process is calculated. Third, the number of seed points and its position in the breast image are determined automatically using density of pixels value. Fourth, a method for calculation of threshold value is proposed for the purpose of region creation in seed region growing. For the evaluation purpose, the proposed method was applied and tested on the RIDER MRI breast dataset from National Biomedical Imaging Archive (NBIA). After the test was performed, it was observed that proposed algorithm gives 90% accuracy, 88% True Negative Fraction, 91% True Positive Fraction, 10% Misclassification Rate, 94% Precision and 86% Relative Overlap which is better than other existing methods. It not only gives better evaluation measure but also provides segmentation method for multiple tumor detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信