{"title":"鸟苷5′-硫代三磷酸可能通过与受精精子不同的途径刺激海胆卵中磷酸肌肽信使的产生。","authors":"I Crossley, T Whalley, M Whitaker","doi":"10.1091/mbc.2.2.121","DOIUrl":null,"url":null,"abstract":"<p><p>We show that microinjecting guanosine-5'-thiotriphosphate (GTP gamma S) into unfertilized sea urchin eggs generates an intracellular free calcium concentration [( Ca]i) transient apparently identical in magnitude and duration to the calcium transient that activates the egg at fertilization. The GTP gamma S-induced transient is blocked by prior microinjection of the inositol trisphosphate (InsP3) antagonist heparin. GTP gamma S injection also causes stimulation of the egg's Na+/H+ antiporter via protein kinase C, even in the absence of a [Ca]i increase. These data suggest that GTP gamma S acts by stimulating the calcium-independent production of the phosphoinositide messengers InsP3 and diacylglycerol (DAG). However, the fertilization [Ca]i transient is not affected by heparin, nor can the sperm cause calcium-independent stimulation of protein kinase C. It seems that the bulk of InsP3 and DAG production at fertilization is triggered by the [Ca]i transient, not by the sperm itself. GDP beta S, a G-protein antagonist, does not affect the fertilization [Ca]i transient. Our findings do not support the idea that signal transduction at fertilization operates via a G-protein linked directly to a plasma membrane sperm receptor.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"2 2","pages":"121-33"},"PeriodicalIF":0.0000,"publicationDate":"1991-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.2.2.121","citationCount":"71","resultStr":"{\"title\":\"Guanosine 5'-thiotriphosphate may stimulate phosphoinositide messenger production in sea urchin eggs by a different route than the fertilizing sperm.\",\"authors\":\"I Crossley, T Whalley, M Whitaker\",\"doi\":\"10.1091/mbc.2.2.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We show that microinjecting guanosine-5'-thiotriphosphate (GTP gamma S) into unfertilized sea urchin eggs generates an intracellular free calcium concentration [( Ca]i) transient apparently identical in magnitude and duration to the calcium transient that activates the egg at fertilization. The GTP gamma S-induced transient is blocked by prior microinjection of the inositol trisphosphate (InsP3) antagonist heparin. GTP gamma S injection also causes stimulation of the egg's Na+/H+ antiporter via protein kinase C, even in the absence of a [Ca]i increase. These data suggest that GTP gamma S acts by stimulating the calcium-independent production of the phosphoinositide messengers InsP3 and diacylglycerol (DAG). However, the fertilization [Ca]i transient is not affected by heparin, nor can the sperm cause calcium-independent stimulation of protein kinase C. It seems that the bulk of InsP3 and DAG production at fertilization is triggered by the [Ca]i transient, not by the sperm itself. GDP beta S, a G-protein antagonist, does not affect the fertilization [Ca]i transient. Our findings do not support the idea that signal transduction at fertilization operates via a G-protein linked directly to a plasma membrane sperm receptor.</p>\",\"PeriodicalId\":9671,\"journal\":{\"name\":\"Cell regulation\",\"volume\":\"2 2\",\"pages\":\"121-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1091/mbc.2.2.121\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.2.2.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.2.2.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Guanosine 5'-thiotriphosphate may stimulate phosphoinositide messenger production in sea urchin eggs by a different route than the fertilizing sperm.
We show that microinjecting guanosine-5'-thiotriphosphate (GTP gamma S) into unfertilized sea urchin eggs generates an intracellular free calcium concentration [( Ca]i) transient apparently identical in magnitude and duration to the calcium transient that activates the egg at fertilization. The GTP gamma S-induced transient is blocked by prior microinjection of the inositol trisphosphate (InsP3) antagonist heparin. GTP gamma S injection also causes stimulation of the egg's Na+/H+ antiporter via protein kinase C, even in the absence of a [Ca]i increase. These data suggest that GTP gamma S acts by stimulating the calcium-independent production of the phosphoinositide messengers InsP3 and diacylglycerol (DAG). However, the fertilization [Ca]i transient is not affected by heparin, nor can the sperm cause calcium-independent stimulation of protein kinase C. It seems that the bulk of InsP3 and DAG production at fertilization is triggered by the [Ca]i transient, not by the sperm itself. GDP beta S, a G-protein antagonist, does not affect the fertilization [Ca]i transient. Our findings do not support the idea that signal transduction at fertilization operates via a G-protein linked directly to a plasma membrane sperm receptor.