基于EMD和支持向量机方法的三电平逆变器故障诊断

Mi Beibei, Shen Yanxia, Wu Dinghui, Zhao Zhipu
{"title":"基于EMD和支持向量机方法的三电平逆变器故障诊断","authors":"Mi Beibei, Shen Yanxia, Wu Dinghui, Zhao Zhipu","doi":"10.1109/ICIEA.2017.8283093","DOIUrl":null,"url":null,"abstract":"A fault diagnosis strategy for neutral point clamped three level inverter (NPC) is proposed. Due to the non-stationary characteristics of fault signals, empirical mode decomposition and support vector machine (EMD-SVM) are adopted in the strategy. The load phase voltages are selected as fault detection signals, after preprocessed using the empirical mode decomposition (EMD), fault signals features are extracted by principal component analysis (PCA) with reduced samples dimensions. Finally, an SVM model is used to classify these faulty samples. Simulation results prove the feasibility and good classification performance of the proposed EMD-SVM strategy.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Three level inverter fault diagnosis using EMD and support vector machine approach\",\"authors\":\"Mi Beibei, Shen Yanxia, Wu Dinghui, Zhao Zhipu\",\"doi\":\"10.1109/ICIEA.2017.8283093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fault diagnosis strategy for neutral point clamped three level inverter (NPC) is proposed. Due to the non-stationary characteristics of fault signals, empirical mode decomposition and support vector machine (EMD-SVM) are adopted in the strategy. The load phase voltages are selected as fault detection signals, after preprocessed using the empirical mode decomposition (EMD), fault signals features are extracted by principal component analysis (PCA) with reduced samples dimensions. Finally, an SVM model is used to classify these faulty samples. Simulation results prove the feasibility and good classification performance of the proposed EMD-SVM strategy.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8283093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种中性点箝位三电平逆变器的故障诊断策略。针对故障信号的非平稳特性,采用了经验模态分解和支持向量机(EMD-SVM)方法。选取负载相电压作为故障检测信号,经经验模态分解(EMD)预处理后,采用降维主成分分析(PCA)提取故障信号特征。最后,利用支持向量机模型对故障样本进行分类。仿真结果证明了所提出的EMD-SVM策略的可行性和良好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three level inverter fault diagnosis using EMD and support vector machine approach
A fault diagnosis strategy for neutral point clamped three level inverter (NPC) is proposed. Due to the non-stationary characteristics of fault signals, empirical mode decomposition and support vector machine (EMD-SVM) are adopted in the strategy. The load phase voltages are selected as fault detection signals, after preprocessed using the empirical mode decomposition (EMD), fault signals features are extracted by principal component analysis (PCA) with reduced samples dimensions. Finally, an SVM model is used to classify these faulty samples. Simulation results prove the feasibility and good classification performance of the proposed EMD-SVM strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信