铰接对象的自校正跟踪

M. Caglar, N. Lobo
{"title":"铰接对象的自校正跟踪","authors":"M. Caglar, N. Lobo","doi":"10.1109/FGR.2006.100","DOIUrl":null,"url":null,"abstract":"Hand detection and tracking play important roles in human computer interaction (HCI) applications, as well as surveillance. We propose a self initializing and self correcting tracking technique that is robust to different skin color, illumination and shadow irregularities. Self initialization is achieved from a detector that has relatively high false positive rate. The detected hands are then tracked backwards and forward in time using mean shift trackers initialized at each hand to find the candidate tracks for possible objects in the test sequence. Observed tracks are merged and weighed to find the real trajectories. Simple actions can be inferred extracting each object from the scene and interpreting their locations within each frame. Extraction is possible using the color histograms of the objects built during the detection phase. We apply the technique here to simple hand tracking with good results, without the need for training for skin color","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self correcting tracking for articulated objects\",\"authors\":\"M. Caglar, N. Lobo\",\"doi\":\"10.1109/FGR.2006.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand detection and tracking play important roles in human computer interaction (HCI) applications, as well as surveillance. We propose a self initializing and self correcting tracking technique that is robust to different skin color, illumination and shadow irregularities. Self initialization is achieved from a detector that has relatively high false positive rate. The detected hands are then tracked backwards and forward in time using mean shift trackers initialized at each hand to find the candidate tracks for possible objects in the test sequence. Observed tracks are merged and weighed to find the real trajectories. Simple actions can be inferred extracting each object from the scene and interpreting their locations within each frame. Extraction is possible using the color histograms of the objects built during the detection phase. We apply the technique here to simple hand tracking with good results, without the need for training for skin color\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

手部检测和跟踪在人机交互(HCI)应用以及监控中发挥着重要作用。我们提出了一种对不同肤色、光照和阴影不规则性具有鲁棒性的自初始化和自校正跟踪技术。自初始化是由一个具有较高假阳性率的检测器实现的。然后使用在每只手初始化的平均移位跟踪器及时向后和向前跟踪检测到的手,以找到测试序列中可能对象的候选轨迹。观察到的轨迹被合并和加权以找到真实的轨迹。可以推断出简单的动作,从场景中提取每个对象并解释它们在每个帧中的位置。使用在检测阶段建立的物体的颜色直方图进行提取是可能的。我们将这项技术应用于简单的手部跟踪,效果很好,不需要对肤色进行培训
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self correcting tracking for articulated objects
Hand detection and tracking play important roles in human computer interaction (HCI) applications, as well as surveillance. We propose a self initializing and self correcting tracking technique that is robust to different skin color, illumination and shadow irregularities. Self initialization is achieved from a detector that has relatively high false positive rate. The detected hands are then tracked backwards and forward in time using mean shift trackers initialized at each hand to find the candidate tracks for possible objects in the test sequence. Observed tracks are merged and weighed to find the real trajectories. Simple actions can be inferred extracting each object from the scene and interpreting their locations within each frame. Extraction is possible using the color histograms of the objects built during the detection phase. We apply the technique here to simple hand tracking with good results, without the need for training for skin color
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信