反射地勤记录仪家庭楼梯反射斑纹

Rizki Aulia Akbar, D. Dafik, R. M. Prihandini
{"title":"反射地勤记录仪家庭楼梯反射斑纹","authors":"Rizki Aulia Akbar, D. Dafik, R. M. Prihandini","doi":"10.25037/cgantjma.v3i1.72","DOIUrl":null,"url":null,"abstract":"Let a simple and connected graph $G=(V,E)$ with the vertex set $V(G)$ and the edge set E(G). If there is a mapping $f$: $V(G)$ $\\rightarrow$ ${0,2,…,2k_v}$ and $f$: $E(G)$ $\\rightarrow$ ${1,2,…,k_e}$ as a function of vertex and edge irregularities labeling with $k=max$ ${2k_v,k_e}$ for $k_v$ and $k_e$ natural numbers and the associated weight of vertex $u,v \\in V(G)$ under $f$ is $w(u)=f(u)+\\sum_{u,v\\in E(G)}f(uv)$. Then the function $f$ is called a local vertex irregular reflexive labeling if every adjacent vertices has distinct vertex weight. When each vertex of graph $G$ is colored with a vertex weight $w(u,v)$, then  graph $G$ is said to have a local vertex irregular reflexive coloring. Minimum number of vertex weight is needed to color the vertices in graf $G$ such that any adjacent vertices are not have the same color is called a local vertex irregular reflexive chromatic number, denoted by $\\chi_{(lrvs)}(G)$. The minimum $k$ required such that $\\chi_{(lrvs)}(G)=\\chi(G)$ where $\\chi(G)$ is chromatic number of proper coloring on G is called local reflexive vertex color strength, denoted by $lrvcs(G)$. In this paper, we will examine the local reflexive vertex color strength of local vertex irregular reflexive coloring on the family of ladder graph.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pewarnaan Titik Ketakteraturan Lokal Refleksif pada Keluarga Graf Tangga\",\"authors\":\"Rizki Aulia Akbar, D. Dafik, R. M. Prihandini\",\"doi\":\"10.25037/cgantjma.v3i1.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let a simple and connected graph $G=(V,E)$ with the vertex set $V(G)$ and the edge set E(G). If there is a mapping $f$: $V(G)$ $\\\\rightarrow$ ${0,2,…,2k_v}$ and $f$: $E(G)$ $\\\\rightarrow$ ${1,2,…,k_e}$ as a function of vertex and edge irregularities labeling with $k=max$ ${2k_v,k_e}$ for $k_v$ and $k_e$ natural numbers and the associated weight of vertex $u,v \\\\in V(G)$ under $f$ is $w(u)=f(u)+\\\\sum_{u,v\\\\in E(G)}f(uv)$. Then the function $f$ is called a local vertex irregular reflexive labeling if every adjacent vertices has distinct vertex weight. When each vertex of graph $G$ is colored with a vertex weight $w(u,v)$, then  graph $G$ is said to have a local vertex irregular reflexive coloring. Minimum number of vertex weight is needed to color the vertices in graf $G$ such that any adjacent vertices are not have the same color is called a local vertex irregular reflexive chromatic number, denoted by $\\\\chi_{(lrvs)}(G)$. The minimum $k$ required such that $\\\\chi_{(lrvs)}(G)=\\\\chi(G)$ where $\\\\chi(G)$ is chromatic number of proper coloring on G is called local reflexive vertex color strength, denoted by $lrvcs(G)$. In this paper, we will examine the local reflexive vertex color strength of local vertex irregular reflexive coloring on the family of ladder graph.\",\"PeriodicalId\":305608,\"journal\":{\"name\":\"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25037/cgantjma.v3i1.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v3i1.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设一个简单的连通图$G=(V,E)$,其顶点集$V(G)$和边集E(G)。如果有一个映射$f$: $V(G)$$\rightarrow$${0,2,…,2k_v}$和$f$: $E(G)$$\rightarrow$${1,2,…,k_e}$作为顶点和边缘不规则性的函数标记$k=max$${2k_v,k_e}$对于$k_v$和$k_e$自然数,$u,v \in V(G)$在$f$下的关联权值为$w(u)=f(u)+\sum_{u,v\in E(G)}f(uv)$。如果相邻顶点的权值不同,则将$f$函数称为局部顶点不规则自反标记。当图$G$的每个顶点都用顶点权值$w(u,v)$着色时,则图$G$具有局部顶点不规则自反着色。为graf $G$中的顶点着色所需的最小顶点权值,使得相邻顶点的颜色不相同,称为局部顶点不规则自反色数,记为$\chi_{(lrvs)}(G)$。使$\chi_{(lrvs)}(G)=\chi(G)$(其中$\chi(G)$是G上正确着色的色数)称为局部自反顶点颜色强度的最小$k$,用$lrvcs(G)$表示。本文研究了梯形图族上局部顶点不规则自反着色的局部自反顶点着色强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pewarnaan Titik Ketakteraturan Lokal Refleksif pada Keluarga Graf Tangga
Let a simple and connected graph $G=(V,E)$ with the vertex set $V(G)$ and the edge set E(G). If there is a mapping $f$: $V(G)$ $\rightarrow$ ${0,2,…,2k_v}$ and $f$: $E(G)$ $\rightarrow$ ${1,2,…,k_e}$ as a function of vertex and edge irregularities labeling with $k=max$ ${2k_v,k_e}$ for $k_v$ and $k_e$ natural numbers and the associated weight of vertex $u,v \in V(G)$ under $f$ is $w(u)=f(u)+\sum_{u,v\in E(G)}f(uv)$. Then the function $f$ is called a local vertex irregular reflexive labeling if every adjacent vertices has distinct vertex weight. When each vertex of graph $G$ is colored with a vertex weight $w(u,v)$, then  graph $G$ is said to have a local vertex irregular reflexive coloring. Minimum number of vertex weight is needed to color the vertices in graf $G$ such that any adjacent vertices are not have the same color is called a local vertex irregular reflexive chromatic number, denoted by $\chi_{(lrvs)}(G)$. The minimum $k$ required such that $\chi_{(lrvs)}(G)=\chi(G)$ where $\chi(G)$ is chromatic number of proper coloring on G is called local reflexive vertex color strength, denoted by $lrvcs(G)$. In this paper, we will examine the local reflexive vertex color strength of local vertex irregular reflexive coloring on the family of ladder graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信