RankFrag:一种基于机器学习的在手绘数字曲线中寻找角点的技术

G. Costagliola, Mattia De Rosa, V. Fuccella
{"title":"RankFrag:一种基于机器学习的在手绘数字曲线中寻找角点的技术","authors":"G. Costagliola, Mattia De Rosa, V. Fuccella","doi":"10.18293/VLSS2015-043","DOIUrl":null,"url":null,"abstract":"We describe RankFrag: a technique which uses machine learning to detect corner points in hand-drawn digital curves. RankFrag classifies the stroke points by iteratively extracting them from a list of corner candidates. The points extracted in the last iterations are said to have a higher rank and are more likely to be corners. The technique has been tested on three different datasets described in the literature. We observed that, considering both accuracy and efficiency, RankFrag performs better than other state-of-art techniques.","PeriodicalId":297195,"journal":{"name":"J. Vis. Lang. Sentient Syst.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"RankFrag: A Machine Learning-Based Technique for Finding Corners in Hand-Drawn Digital Curves\",\"authors\":\"G. Costagliola, Mattia De Rosa, V. Fuccella\",\"doi\":\"10.18293/VLSS2015-043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe RankFrag: a technique which uses machine learning to detect corner points in hand-drawn digital curves. RankFrag classifies the stroke points by iteratively extracting them from a list of corner candidates. The points extracted in the last iterations are said to have a higher rank and are more likely to be corners. The technique has been tested on three different datasets described in the literature. We observed that, considering both accuracy and efficiency, RankFrag performs better than other state-of-art techniques.\",\"PeriodicalId\":297195,\"journal\":{\"name\":\"J. Vis. Lang. Sentient Syst.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Vis. Lang. Sentient Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18293/VLSS2015-043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Vis. Lang. Sentient Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18293/VLSS2015-043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们描述了RankFrag:一种使用机器学习来检测手绘数字曲线中的角点的技术。RankFrag通过从角候选列表中迭代提取笔画点来对笔画点进行分类。在最后一次迭代中提取的点被认为具有更高的秩,并且更有可能是角。该技术已经在文献中描述的三个不同的数据集上进行了测试。我们观察到,考虑到准确性和效率,RankFrag比其他最先进的技术表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RankFrag: A Machine Learning-Based Technique for Finding Corners in Hand-Drawn Digital Curves
We describe RankFrag: a technique which uses machine learning to detect corner points in hand-drawn digital curves. RankFrag classifies the stroke points by iteratively extracting them from a list of corner candidates. The points extracted in the last iterations are said to have a higher rank and are more likely to be corners. The technique has been tested on three different datasets described in the literature. We observed that, considering both accuracy and efficiency, RankFrag performs better than other state-of-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信