基于空间贝叶斯网络的快速视觉轨迹分析

T. Liebig, Christine Kopp, M. May
{"title":"基于空间贝叶斯网络的快速视觉轨迹分析","authors":"T. Liebig, Christine Kopp, M. May","doi":"10.1109/ICDMW.2009.44","DOIUrl":null,"url":null,"abstract":"During the past years the first tools for visual analysis of trajectory data appeared. Considering the growing sizes of trajectory collections, one important task is to ensure user interactivity during data analysis. In this paper we present a fast, model-based visualization approach for the analysis of location dependencies in large trajectory collections. Existing approaches are not suitable for visual dependency analysis as the size and complexity of trajectory data constrain ad hoc and advance computations. Also recent developments in the area of trajectory data warehouses cannot be applied because the spatial correlations are lost during trajectory aggregation. Our approach builds a compact model which represents the dependency structures of the data. The visualisation toolkit then interacts only with the model and is thus independent of the size of the underlying trajectory database. More precisely, we build a Bayesian Network model using the Scalable Sparse Bayesian Network Learning (SSBNL) algorithm, which we improve to represent also negative correlations. We implement our approach into the GIS MapInfo using MapBasic scripts for the user interface and an independent mediator script to retrieve patterns from the model. We demonstrate our approach using mobile phone data of the city of Milan, Italy.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Fast Visual Trajectory Analysis Using Spatial Bayesian Networks\",\"authors\":\"T. Liebig, Christine Kopp, M. May\",\"doi\":\"10.1109/ICDMW.2009.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past years the first tools for visual analysis of trajectory data appeared. Considering the growing sizes of trajectory collections, one important task is to ensure user interactivity during data analysis. In this paper we present a fast, model-based visualization approach for the analysis of location dependencies in large trajectory collections. Existing approaches are not suitable for visual dependency analysis as the size and complexity of trajectory data constrain ad hoc and advance computations. Also recent developments in the area of trajectory data warehouses cannot be applied because the spatial correlations are lost during trajectory aggregation. Our approach builds a compact model which represents the dependency structures of the data. The visualisation toolkit then interacts only with the model and is thus independent of the size of the underlying trajectory database. More precisely, we build a Bayesian Network model using the Scalable Sparse Bayesian Network Learning (SSBNL) algorithm, which we improve to represent also negative correlations. We implement our approach into the GIS MapInfo using MapBasic scripts for the user interface and an independent mediator script to retrieve patterns from the model. We demonstrate our approach using mobile phone data of the city of Milan, Italy.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在过去几年中,出现了第一批轨道数据可视化分析工具。考虑到轨迹集合的规模越来越大,一个重要的任务是确保数据分析过程中的用户交互性。在本文中,我们提出了一种快速的、基于模型的可视化方法,用于分析大型轨迹集合中的位置依赖性。现有的方法由于轨迹数据的大小和复杂性限制了特别的和超前的计算,不适合进行视觉依赖性分析。此外,由于在轨迹聚合过程中丢失了空间相关性,因此无法应用轨迹数据仓库领域的最新发展。我们的方法建立了一个紧凑的模型来表示数据的依赖结构。可视化工具包然后只与模型交互,因此与底层轨迹数据库的大小无关。更准确地说,我们使用可扩展稀疏贝叶斯网络学习(SSBNL)算法构建贝叶斯网络模型,我们改进该算法以表示负相关。我们使用MapBasic脚本作为用户界面,并使用独立的中介脚本从模型中检索模式,将我们的方法实现到GIS MapInfo中。我们使用意大利米兰市的移动电话数据来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Visual Trajectory Analysis Using Spatial Bayesian Networks
During the past years the first tools for visual analysis of trajectory data appeared. Considering the growing sizes of trajectory collections, one important task is to ensure user interactivity during data analysis. In this paper we present a fast, model-based visualization approach for the analysis of location dependencies in large trajectory collections. Existing approaches are not suitable for visual dependency analysis as the size and complexity of trajectory data constrain ad hoc and advance computations. Also recent developments in the area of trajectory data warehouses cannot be applied because the spatial correlations are lost during trajectory aggregation. Our approach builds a compact model which represents the dependency structures of the data. The visualisation toolkit then interacts only with the model and is thus independent of the size of the underlying trajectory database. More precisely, we build a Bayesian Network model using the Scalable Sparse Bayesian Network Learning (SSBNL) algorithm, which we improve to represent also negative correlations. We implement our approach into the GIS MapInfo using MapBasic scripts for the user interface and an independent mediator script to retrieve patterns from the model. We demonstrate our approach using mobile phone data of the city of Milan, Italy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信