{"title":"非负玻尔兹曼机的有效平均场推理方法","authors":"Muneki Yasuda","doi":"10.1109/ICPR.2014.619","DOIUrl":null,"url":null,"abstract":"Nonnegative Boltzmann machines (NNBMs) are recurrent probabilistic neural network models that can describe multi-modal nonnegative data. NNBMs form rectified Gaussian distributions that appear in biological neural network models, positive matrix factorization, nonnegative matrix factorization, and so on. In this paper, an effective inference method for NNBMs is proposed that uses the mean-field method, referred to as the Thou less-Anderson-Palmer equation, and the diagonal consistency method, which was recently proposed.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Mean-Field Inference Method for Nonnegative Boltzmann Machines\",\"authors\":\"Muneki Yasuda\",\"doi\":\"10.1109/ICPR.2014.619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonnegative Boltzmann machines (NNBMs) are recurrent probabilistic neural network models that can describe multi-modal nonnegative data. NNBMs form rectified Gaussian distributions that appear in biological neural network models, positive matrix factorization, nonnegative matrix factorization, and so on. In this paper, an effective inference method for NNBMs is proposed that uses the mean-field method, referred to as the Thou less-Anderson-Palmer equation, and the diagonal consistency method, which was recently proposed.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective Mean-Field Inference Method for Nonnegative Boltzmann Machines
Nonnegative Boltzmann machines (NNBMs) are recurrent probabilistic neural network models that can describe multi-modal nonnegative data. NNBMs form rectified Gaussian distributions that appear in biological neural network models, positive matrix factorization, nonnegative matrix factorization, and so on. In this paper, an effective inference method for NNBMs is proposed that uses the mean-field method, referred to as the Thou less-Anderson-Palmer equation, and the diagonal consistency method, which was recently proposed.