{"title":"二元单纯形b样条:一个新的范例","authors":"M. Neamtu","doi":"10.1109/SCCG.2001.945339","DOIUrl":null,"url":null,"abstract":"A construction of bivariate splines is described, based on a new concept of higher degree Delaunay configurations. The crux of this construction is that knot-sets for simplex B-splines are selected by considering groups of \"nearby\" knots. The new approach gives rise to a natural generalization of univariate splines in that the linear span of this collection of B-splines forms a space which is analogous to the classical univariate splines. This new spline space depends uniquely and in a local way on the prescribed knot locations, and there is no need to use auxiliary or perturbed knots as in some earlier constructions.","PeriodicalId":331436,"journal":{"name":"Proceedings Spring Conference on Computer Graphics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Bivariate simplex B-splines: a new paradigm\",\"authors\":\"M. Neamtu\",\"doi\":\"10.1109/SCCG.2001.945339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A construction of bivariate splines is described, based on a new concept of higher degree Delaunay configurations. The crux of this construction is that knot-sets for simplex B-splines are selected by considering groups of \\\"nearby\\\" knots. The new approach gives rise to a natural generalization of univariate splines in that the linear span of this collection of B-splines forms a space which is analogous to the classical univariate splines. This new spline space depends uniquely and in a local way on the prescribed knot locations, and there is no need to use auxiliary or perturbed knots as in some earlier constructions.\",\"PeriodicalId\":331436,\"journal\":{\"name\":\"Proceedings Spring Conference on Computer Graphics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Spring Conference on Computer Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCG.2001.945339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Spring Conference on Computer Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCG.2001.945339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A construction of bivariate splines is described, based on a new concept of higher degree Delaunay configurations. The crux of this construction is that knot-sets for simplex B-splines are selected by considering groups of "nearby" knots. The new approach gives rise to a natural generalization of univariate splines in that the linear span of this collection of B-splines forms a space which is analogous to the classical univariate splines. This new spline space depends uniquely and in a local way on the prescribed knot locations, and there is no need to use auxiliary or perturbed knots as in some earlier constructions.