二元单纯形b样条:一个新的范例

M. Neamtu
{"title":"二元单纯形b样条:一个新的范例","authors":"M. Neamtu","doi":"10.1109/SCCG.2001.945339","DOIUrl":null,"url":null,"abstract":"A construction of bivariate splines is described, based on a new concept of higher degree Delaunay configurations. The crux of this construction is that knot-sets for simplex B-splines are selected by considering groups of \"nearby\" knots. The new approach gives rise to a natural generalization of univariate splines in that the linear span of this collection of B-splines forms a space which is analogous to the classical univariate splines. This new spline space depends uniquely and in a local way on the prescribed knot locations, and there is no need to use auxiliary or perturbed knots as in some earlier constructions.","PeriodicalId":331436,"journal":{"name":"Proceedings Spring Conference on Computer Graphics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Bivariate simplex B-splines: a new paradigm\",\"authors\":\"M. Neamtu\",\"doi\":\"10.1109/SCCG.2001.945339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A construction of bivariate splines is described, based on a new concept of higher degree Delaunay configurations. The crux of this construction is that knot-sets for simplex B-splines are selected by considering groups of \\\"nearby\\\" knots. The new approach gives rise to a natural generalization of univariate splines in that the linear span of this collection of B-splines forms a space which is analogous to the classical univariate splines. This new spline space depends uniquely and in a local way on the prescribed knot locations, and there is no need to use auxiliary or perturbed knots as in some earlier constructions.\",\"PeriodicalId\":331436,\"journal\":{\"name\":\"Proceedings Spring Conference on Computer Graphics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Spring Conference on Computer Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCG.2001.945339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Spring Conference on Computer Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCG.2001.945339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于高次Delaunay构形的新概念,描述了二元样条的构造。这种构造的关键在于单纯形b样条的结集是通过考虑“附近”结群来选择的。这种新方法对单变量样条曲线进行了自然的推广,因为b样条曲线的线性张成形成了一个类似于经典单变量样条曲线的空间。这种新的样条空间以独特和局部的方式依赖于规定的结位置,并且不需要像在一些早期的结构中那样使用辅助或扰动结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bivariate simplex B-splines: a new paradigm
A construction of bivariate splines is described, based on a new concept of higher degree Delaunay configurations. The crux of this construction is that knot-sets for simplex B-splines are selected by considering groups of "nearby" knots. The new approach gives rise to a natural generalization of univariate splines in that the linear span of this collection of B-splines forms a space which is analogous to the classical univariate splines. This new spline space depends uniquely and in a local way on the prescribed knot locations, and there is no need to use auxiliary or perturbed knots as in some earlier constructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信