Wenyu Zhao, Dong Zhou, Xuan Wu, S. Lawless, Jianxun Liu
{"title":"协同社会标签系统中个性化搜索的增强用户模型","authors":"Wenyu Zhao, Dong Zhou, Xuan Wu, S. Lawless, Jianxun Liu","doi":"10.4108/EAI.9-10-2017.154549","DOIUrl":null,"url":null,"abstract":"Alongside the enormous volume of user-generated content posted to World Wide Web, there exists a thriving demand for search personalization services. To provide personalized services, a user model is usually required. We address the setting adopted by the majority of previous work, where a user model consists solely of the user’s past information. We construct an augmented user model from a number of tags and documents. These resources are further processed according to the user’s past information by exploring external knowledge base. A novel generative model is proposed for user model generation. This model utilizes recent advances in neural language models such as Word Embeddings with latent semantic models such as Latent Dirichlet Allocation. We further present a new query expansion method to facilitate the desired personalized retrieval. Experiments conducted on two real-world collaborative social tagging datasets show that our proposed methods outperform state-of-the-art methods.","PeriodicalId":109199,"journal":{"name":"EAI Endorsed Transactions on Collaborative Computing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Augmented User Model for Personalized Search in Collaborative Social Tagging Systems\",\"authors\":\"Wenyu Zhao, Dong Zhou, Xuan Wu, S. Lawless, Jianxun Liu\",\"doi\":\"10.4108/EAI.9-10-2017.154549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alongside the enormous volume of user-generated content posted to World Wide Web, there exists a thriving demand for search personalization services. To provide personalized services, a user model is usually required. We address the setting adopted by the majority of previous work, where a user model consists solely of the user’s past information. We construct an augmented user model from a number of tags and documents. These resources are further processed according to the user’s past information by exploring external knowledge base. A novel generative model is proposed for user model generation. This model utilizes recent advances in neural language models such as Word Embeddings with latent semantic models such as Latent Dirichlet Allocation. We further present a new query expansion method to facilitate the desired personalized retrieval. Experiments conducted on two real-world collaborative social tagging datasets show that our proposed methods outperform state-of-the-art methods.\",\"PeriodicalId\":109199,\"journal\":{\"name\":\"EAI Endorsed Transactions on Collaborative Computing\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Collaborative Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.9-10-2017.154549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Collaborative Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.9-10-2017.154549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Augmented User Model for Personalized Search in Collaborative Social Tagging Systems
Alongside the enormous volume of user-generated content posted to World Wide Web, there exists a thriving demand for search personalization services. To provide personalized services, a user model is usually required. We address the setting adopted by the majority of previous work, where a user model consists solely of the user’s past information. We construct an augmented user model from a number of tags and documents. These resources are further processed according to the user’s past information by exploring external knowledge base. A novel generative model is proposed for user model generation. This model utilizes recent advances in neural language models such as Word Embeddings with latent semantic models such as Latent Dirichlet Allocation. We further present a new query expansion method to facilitate the desired personalized retrieval. Experiments conducted on two real-world collaborative social tagging datasets show that our proposed methods outperform state-of-the-art methods.