基于压缩感知的材料光谱数据采集与建模

Fanzhi Kong, Genyuan Zhang
{"title":"基于压缩感知的材料光谱数据采集与建模","authors":"Fanzhi Kong, Genyuan Zhang","doi":"10.1109/ICSAI48974.2019.9010474","DOIUrl":null,"url":null,"abstract":"Based on the characteristics of multispectral color data (the uniqueness of multispectral data, which does not depend on specific media, application gamut, observer and other factors, and can achieve accurate color reproduction and reproduction), the research scheme of this paper uses compression sensing technology to achieve the acquisition of surface material data of complex objects, and combines multispectral data processing, analysis and other technologies to build multispectral data. Expression model of data.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum data acquisition and modeling of materials based on compressed sensing\",\"authors\":\"Fanzhi Kong, Genyuan Zhang\",\"doi\":\"10.1109/ICSAI48974.2019.9010474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the characteristics of multispectral color data (the uniqueness of multispectral data, which does not depend on specific media, application gamut, observer and other factors, and can achieve accurate color reproduction and reproduction), the research scheme of this paper uses compression sensing technology to achieve the acquisition of surface material data of complex objects, and combines multispectral data processing, analysis and other technologies to build multispectral data. Expression model of data.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于多光谱色彩数据的特点(多光谱数据的唯一性,不依赖于特定介质、应用域、观测者等因素,能够实现准确的色彩再现和再现),本文的研究方案采用压缩感知技术实现复杂物体表面材料数据的采集,并结合多光谱数据处理、分析等技术构建多光谱数据。数据的表达模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum data acquisition and modeling of materials based on compressed sensing
Based on the characteristics of multispectral color data (the uniqueness of multispectral data, which does not depend on specific media, application gamut, observer and other factors, and can achieve accurate color reproduction and reproduction), the research scheme of this paper uses compression sensing technology to achieve the acquisition of surface material data of complex objects, and combines multispectral data processing, analysis and other technologies to build multispectral data. Expression model of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信