从非侵入性数据源推断占用情况

Kevin Ting, Richard Yu, M. Srivastava
{"title":"从非侵入性数据源推断占用情况","authors":"Kevin Ting, Richard Yu, M. Srivastava","doi":"10.1145/2528282.2528312","DOIUrl":null,"url":null,"abstract":"Intuitively, measurements from utility meters that are associated with a physical space have embedded in them some information about the occupants of that space. Occupancy information can be sensitive yet empowering. On one hand, with the right information, administrators can adjust subsystems to maximize comfort and energy efficiency. On the other hand, sensitive details about occupants may be leaked. We explore the accuracy to which meter data from physical spaces, when subjected to machine learning algorithms, can yield occupancy information. Our results can then be used to devise low-cost mechanisms for occupancy sensing from the opportunistic use of already available data, and to quantify the risk of leaking privacy-sensitive inferences.","PeriodicalId":184274,"journal":{"name":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Occupancy inferencing from non-intrusive data sources\",\"authors\":\"Kevin Ting, Richard Yu, M. Srivastava\",\"doi\":\"10.1145/2528282.2528312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intuitively, measurements from utility meters that are associated with a physical space have embedded in them some information about the occupants of that space. Occupancy information can be sensitive yet empowering. On one hand, with the right information, administrators can adjust subsystems to maximize comfort and energy efficiency. On the other hand, sensitive details about occupants may be leaked. We explore the accuracy to which meter data from physical spaces, when subjected to machine learning algorithms, can yield occupancy information. Our results can then be used to devise low-cost mechanisms for occupancy sensing from the opportunistic use of already available data, and to quantify the risk of leaking privacy-sensitive inferences.\",\"PeriodicalId\":184274,\"journal\":{\"name\":\"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2528282.2528312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2528282.2528312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

直观地说,与物理空间相关联的电能表的测量结果嵌入了该空间居住者的一些信息。占用信息可能是敏感的,但授权。一方面,有了正确的信息,管理员可以调整子系统以最大限度地提高舒适度和能源效率。另一方面,有关住户的敏感细节可能会泄露。我们探索了来自物理空间的仪表数据在受到机器学习算法的影响时可以产生占用信息的准确性。然后,我们的研究结果可以用于设计低成本的占用感机制,通过机会性地使用已有的数据,并量化泄露隐私敏感推断的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occupancy inferencing from non-intrusive data sources
Intuitively, measurements from utility meters that are associated with a physical space have embedded in them some information about the occupants of that space. Occupancy information can be sensitive yet empowering. On one hand, with the right information, administrators can adjust subsystems to maximize comfort and energy efficiency. On the other hand, sensitive details about occupants may be leaked. We explore the accuracy to which meter data from physical spaces, when subjected to machine learning algorithms, can yield occupancy information. Our results can then be used to devise low-cost mechanisms for occupancy sensing from the opportunistic use of already available data, and to quantify the risk of leaking privacy-sensitive inferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信