高效区域搜索的目标检测

Sudheendra Vijayanarasimhan, K. Grauman
{"title":"高效区域搜索的目标检测","authors":"Sudheendra Vijayanarasimhan, K. Grauman","doi":"10.1109/CVPR.2011.5995545","DOIUrl":null,"url":null,"abstract":"We propose a branch-and-cut strategy for efficient region-based object detection. Given an oversegmented image, our method determines the subset of spatially contiguous regions whose collective features will maximize a classifier's score. We formulate the objective as an instance of the prize-collecting Steiner tree problem, and show that for a family of additive classifiers this enables fast search for the optimal object region via a branch-and-cut algorithm. Unlike existing branch-and-bounddetection methods designed for bounding boxes, our approach allows scoring of irregular shapes — which is especially critical for objects that do not conform to a rectangular window. We provide results on three challenging object detection datasets, and demonstrate the advantage of rapidly seeking best-scoring regions rather than subwindow rectangles.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Efficient region search for object detection\",\"authors\":\"Sudheendra Vijayanarasimhan, K. Grauman\",\"doi\":\"10.1109/CVPR.2011.5995545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a branch-and-cut strategy for efficient region-based object detection. Given an oversegmented image, our method determines the subset of spatially contiguous regions whose collective features will maximize a classifier's score. We formulate the objective as an instance of the prize-collecting Steiner tree problem, and show that for a family of additive classifiers this enables fast search for the optimal object region via a branch-and-cut algorithm. Unlike existing branch-and-bounddetection methods designed for bounding boxes, our approach allows scoring of irregular shapes — which is especially critical for objects that do not conform to a rectangular window. We provide results on three challenging object detection datasets, and demonstrate the advantage of rapidly seeking best-scoring regions rather than subwindow rectangles.\",\"PeriodicalId\":445398,\"journal\":{\"name\":\"CVPR 2011\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVPR 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2011.5995545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

我们提出了一种基于区域的高效目标检测分支切断策略。给定一个过度分割的图像,我们的方法确定空间连续区域的子集,其集合特征将最大化分类器的分数。我们将目标作为奖品收集斯坦纳树问题的一个实例,并表明对于一组加性分类器,这可以通过分支-切割算法快速搜索到最优目标区域。与现有的为边界框设计的分支边界检测方法不同,我们的方法允许对不规则形状进行评分——这对于不符合矩形窗口的对象尤其重要。我们提供了三个具有挑战性的目标检测数据集的结果,并展示了快速寻找得分最高的区域而不是子窗口矩形的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient region search for object detection
We propose a branch-and-cut strategy for efficient region-based object detection. Given an oversegmented image, our method determines the subset of spatially contiguous regions whose collective features will maximize a classifier's score. We formulate the objective as an instance of the prize-collecting Steiner tree problem, and show that for a family of additive classifiers this enables fast search for the optimal object region via a branch-and-cut algorithm. Unlike existing branch-and-bounddetection methods designed for bounding boxes, our approach allows scoring of irregular shapes — which is especially critical for objects that do not conform to a rectangular window. We provide results on three challenging object detection datasets, and demonstrate the advantage of rapidly seeking best-scoring regions rather than subwindow rectangles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信