通用学习网络的自相关联想记忆

Keiko Shibuta, K. Hirasawa, Jinglu Hu, J. Murata
{"title":"通用学习网络的自相关联想记忆","authors":"Keiko Shibuta, K. Hirasawa, Jinglu Hu, J. Murata","doi":"10.1109/SICE.2002.1195251","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new auto correlation associative memory using Universal Learning Networks (ULNs). It enables not only to obtain associative memory by optimizing parameters but also to store more memories than conventional models by introducing \"don't care nodes\" or \"sensitivity term\". This is expected to settle some problems related to associative memory.","PeriodicalId":301855,"journal":{"name":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto correlation associative memory by Universal Learning Networks (ULNs)\",\"authors\":\"Keiko Shibuta, K. Hirasawa, Jinglu Hu, J. Murata\",\"doi\":\"10.1109/SICE.2002.1195251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new auto correlation associative memory using Universal Learning Networks (ULNs). It enables not only to obtain associative memory by optimizing parameters but also to store more memories than conventional models by introducing \\\"don't care nodes\\\" or \\\"sensitivity term\\\". This is expected to settle some problems related to associative memory.\",\"PeriodicalId\":301855,\"journal\":{\"name\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2002.1195251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2002.1195251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于通用学习网络的自相关联想记忆方法。它不仅可以通过优化参数获得联想记忆,还可以通过引入“不关心节点”或“灵敏度项”来存储比传统模型更多的记忆。这有望解决一些与联想记忆有关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto correlation associative memory by Universal Learning Networks (ULNs)
In this paper, we propose a new auto correlation associative memory using Universal Learning Networks (ULNs). It enables not only to obtain associative memory by optimizing parameters but also to store more memories than conventional models by introducing "don't care nodes" or "sensitivity term". This is expected to settle some problems related to associative memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信