A. Busson, Rafael H. Rocha, Rennan Gaio, Rafael Miceli, Ivan Pereira, D. D. S. Moraes, S. Colcher, Á. Veiga, Bruno Rizzi, Francisco Evangelista, Leandro Santos, Fellipe Marques, Marcos Rabaioli, Diego Feldberg, Debora Mattos, João Pasqua, Diogo G. Dias
{"title":"基于变压器嵌入和分类感知关注层的金融交易分层分类","authors":"A. Busson, Rafael H. Rocha, Rennan Gaio, Rafael Miceli, Ivan Pereira, D. D. S. Moraes, S. Colcher, Á. Veiga, Bruno Rizzi, Francisco Evangelista, Leandro Santos, Fellipe Marques, Marcos Rabaioli, Diego Feldberg, Debora Mattos, João Pasqua, Diogo G. Dias","doi":"10.5753/bwaif.2023.229322","DOIUrl":null,"url":null,"abstract":"This work proposes the Two-headed DragoNet, a Transformer-based model for hierarchical multi-label classification of financial transactions. Our model is based on a stack of Transformers encoder layers that generates contextual embeddings from two short textual descriptors (merchant name and business activity), followed by a Context Fusion layer and two output heads that classify transactions according to a hierarchical two-level taxonomy (macro and micro categories). Finally, our proposed Taxonomy-aware Attention Layer corrects predictions that break categorical hierarchy rules defined in the given taxonomy. Our proposal outperforms classical machine learning methods in experiments of macro-category classification by achieving an F1-score of 93% on a card dataset and 95% on a current account dataset.","PeriodicalId":101527,"journal":{"name":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","volume":"48 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Classification of Financial Transactions Through Context-Fusion of Transformer-based Embeddings and Taxonomy-aware Attention Layer\",\"authors\":\"A. Busson, Rafael H. Rocha, Rennan Gaio, Rafael Miceli, Ivan Pereira, D. D. S. Moraes, S. Colcher, Á. Veiga, Bruno Rizzi, Francisco Evangelista, Leandro Santos, Fellipe Marques, Marcos Rabaioli, Diego Feldberg, Debora Mattos, João Pasqua, Diogo G. Dias\",\"doi\":\"10.5753/bwaif.2023.229322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the Two-headed DragoNet, a Transformer-based model for hierarchical multi-label classification of financial transactions. Our model is based on a stack of Transformers encoder layers that generates contextual embeddings from two short textual descriptors (merchant name and business activity), followed by a Context Fusion layer and two output heads that classify transactions according to a hierarchical two-level taxonomy (macro and micro categories). Finally, our proposed Taxonomy-aware Attention Layer corrects predictions that break categorical hierarchy rules defined in the given taxonomy. Our proposal outperforms classical machine learning methods in experiments of macro-category classification by achieving an F1-score of 93% on a card dataset and 95% on a current account dataset.\",\"PeriodicalId\":101527,\"journal\":{\"name\":\"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)\",\"volume\":\"48 22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/bwaif.2023.229322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bwaif.2023.229322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Classification of Financial Transactions Through Context-Fusion of Transformer-based Embeddings and Taxonomy-aware Attention Layer
This work proposes the Two-headed DragoNet, a Transformer-based model for hierarchical multi-label classification of financial transactions. Our model is based on a stack of Transformers encoder layers that generates contextual embeddings from two short textual descriptors (merchant name and business activity), followed by a Context Fusion layer and two output heads that classify transactions according to a hierarchical two-level taxonomy (macro and micro categories). Finally, our proposed Taxonomy-aware Attention Layer corrects predictions that break categorical hierarchy rules defined in the given taxonomy. Our proposal outperforms classical machine learning methods in experiments of macro-category classification by achieving an F1-score of 93% on a card dataset and 95% on a current account dataset.