多传感器机器人系统的几何融合方法

Yoshihiko Nakamura, Ymgti Zu
{"title":"多传感器机器人系统的几何融合方法","authors":"Yoshihiko Nakamura, Ymgti Zu","doi":"10.1109/ROBOT.1989.100061","DOIUrl":null,"url":null,"abstract":"A general statistical fusion method motivated by the geometry of uncertainties is proposed for robotic systems with multiple sensors. The treatment of nonlinearity is generalized so as to include both the structural nonlinearity and the computational nonlinearity. First, assuming Gaussian noise additive to the sensory data, the uncertainty ellipsoid associated with the covariance matrix of the error of the sensory information is defined. Second, the optimal fusion is defined as the one, among all the possible linear combinations of sensory information, that minimizes the geometrical volume of the ellipsoid. The resultant fusion equation coincides with those obtained by Bayesian inference, Kalman filter theory, and the weighted least-squares estimation. Finally, the method is extended to include the fusion of partial information.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Geometrical fusion method for multi-sensor robotic systems\",\"authors\":\"Yoshihiko Nakamura, Ymgti Zu\",\"doi\":\"10.1109/ROBOT.1989.100061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general statistical fusion method motivated by the geometry of uncertainties is proposed for robotic systems with multiple sensors. The treatment of nonlinearity is generalized so as to include both the structural nonlinearity and the computational nonlinearity. First, assuming Gaussian noise additive to the sensory data, the uncertainty ellipsoid associated with the covariance matrix of the error of the sensory information is defined. Second, the optimal fusion is defined as the one, among all the possible linear combinations of sensory information, that minimizes the geometrical volume of the ellipsoid. The resultant fusion equation coincides with those obtained by Bayesian inference, Kalman filter theory, and the weighted least-squares estimation. Finally, the method is extended to include the fusion of partial information.<<ETX>>\",\"PeriodicalId\":114394,\"journal\":{\"name\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1989.100061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.100061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

针对具有多传感器的机器人系统,提出了一种基于几何不确定性的通用统计融合方法。对非线性的处理进行了推广,使其既包括结构非线性又包括计算非线性。首先,假设高斯噪声加到感官数据中,定义了与感官信息误差协方差矩阵相关联的不确定性椭球;其次,将最优融合定义为在所有可能的感官信息线性组合中,使椭球几何体积最小的融合。所得的融合方程与贝叶斯推理、卡尔曼滤波理论和加权最小二乘估计得到的结果一致。最后,将该方法扩展到包含部分信息的融合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrical fusion method for multi-sensor robotic systems
A general statistical fusion method motivated by the geometry of uncertainties is proposed for robotic systems with multiple sensors. The treatment of nonlinearity is generalized so as to include both the structural nonlinearity and the computational nonlinearity. First, assuming Gaussian noise additive to the sensory data, the uncertainty ellipsoid associated with the covariance matrix of the error of the sensory information is defined. Second, the optimal fusion is defined as the one, among all the possible linear combinations of sensory information, that minimizes the geometrical volume of the ellipsoid. The resultant fusion equation coincides with those obtained by Bayesian inference, Kalman filter theory, and the weighted least-squares estimation. Finally, the method is extended to include the fusion of partial information.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信