最小二乘模型平均:一些进一步的结果

Xinyu Zhang, Alan T. K. Wan, Guohua Zou
{"title":"最小二乘模型平均:一些进一步的结果","authors":"Xinyu Zhang, Alan T. K. Wan, Guohua Zou","doi":"10.2139/ssrn.3481542","DOIUrl":null,"url":null,"abstract":"This note is in response to a recent paper by Hansen (2007, Econometrica) who proposed an optimal model average estimator with weights selected by minimizing a Mallows criterion. The main contribution of Hansen’s paper is a demonstration that the Mallows criterion is asymptotically equivalent to the squared error, so the model average estimator that minimizes the Mallows criterion also minimizes the squared error in large samples. We are concerned with two assumptions that accompany Hansen’s approach. First is the assumption that the approximating models are strictly nested in a way that depends on the ordering of regressors. Often there is no clear basis for the ordering and the approach does not permit non-nested models which are more realistic in a practical sense. Second, for the optimality result to hold the model weights are required to lie within a special discrete set. In fact, Hansen (2007) noted both difficulties and called for extensions of the proof techniques. We provide an alternative proof which shows that the result on the optimality of the Mallows criterion in fact holds for continuous model weights and under a non-nested set-up that allows any linear combination of regressors in the approximating models that make up the model average estimator. These are important extensions and our results provide a stronger theoretical basis for the use of the Mallows criterion in model averaging by strengthening existing findings.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Least Squares Model Averaging: Some Further Results\",\"authors\":\"Xinyu Zhang, Alan T. K. Wan, Guohua Zou\",\"doi\":\"10.2139/ssrn.3481542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note is in response to a recent paper by Hansen (2007, Econometrica) who proposed an optimal model average estimator with weights selected by minimizing a Mallows criterion. The main contribution of Hansen’s paper is a demonstration that the Mallows criterion is asymptotically equivalent to the squared error, so the model average estimator that minimizes the Mallows criterion also minimizes the squared error in large samples. We are concerned with two assumptions that accompany Hansen’s approach. First is the assumption that the approximating models are strictly nested in a way that depends on the ordering of regressors. Often there is no clear basis for the ordering and the approach does not permit non-nested models which are more realistic in a practical sense. Second, for the optimality result to hold the model weights are required to lie within a special discrete set. In fact, Hansen (2007) noted both difficulties and called for extensions of the proof techniques. We provide an alternative proof which shows that the result on the optimality of the Mallows criterion in fact holds for continuous model weights and under a non-nested set-up that allows any linear combination of regressors in the approximating models that make up the model average estimator. These are important extensions and our results provide a stronger theoretical basis for the use of the Mallows criterion in model averaging by strengthening existing findings.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3481542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3481542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文是对Hansen(2007年,Econometrica)最近发表的一篇论文的回应,他提出了一个最优模型平均估计器,其权重通过最小化Mallows标准来选择。Hansen论文的主要贡献是证明了Mallows准则与平方误差是渐近等价的,因此最小化Mallows准则的模型平均估计器也最小化了大样本中的平方误差。我们关心的是伴随汉森的方法而来的两个假设。首先是假设近似模型以一种依赖于回归量排序的方式严格嵌套。通常没有明确的排序基础,并且该方法不允许非嵌套模型,而非嵌套模型在实际意义上更为现实。其次,为了使最优结果保持模型权重,需要在一个特殊的离散集中。事实上,Hansen(2007)注意到了这两个困难,并呼吁扩展证明技术。我们提供了另一种证明,表明Mallows准则的最优性结果实际上适用于连续模型权重和非嵌套设置,该设置允许在组成模型平均估计量的近似模型中回归量的任何线性组合。这些都是重要的扩展,我们的结果通过加强现有的发现,为在模型平均中使用Mallows准则提供了更强的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Least Squares Model Averaging: Some Further Results
This note is in response to a recent paper by Hansen (2007, Econometrica) who proposed an optimal model average estimator with weights selected by minimizing a Mallows criterion. The main contribution of Hansen’s paper is a demonstration that the Mallows criterion is asymptotically equivalent to the squared error, so the model average estimator that minimizes the Mallows criterion also minimizes the squared error in large samples. We are concerned with two assumptions that accompany Hansen’s approach. First is the assumption that the approximating models are strictly nested in a way that depends on the ordering of regressors. Often there is no clear basis for the ordering and the approach does not permit non-nested models which are more realistic in a practical sense. Second, for the optimality result to hold the model weights are required to lie within a special discrete set. In fact, Hansen (2007) noted both difficulties and called for extensions of the proof techniques. We provide an alternative proof which shows that the result on the optimality of the Mallows criterion in fact holds for continuous model weights and under a non-nested set-up that allows any linear combination of regressors in the approximating models that make up the model average estimator. These are important extensions and our results provide a stronger theoretical basis for the use of the Mallows criterion in model averaging by strengthening existing findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信