{"title":"求解逆散射问题的人工智能辅助全局优化","authors":"M. Salucci, L. Poli, P. Rocca","doi":"10.23919/eucap53622.2022.9769539","DOIUrl":null,"url":null,"abstract":"The solution of inverse scattering (IS) problems supported by artificial intelligence (AI) is addressed. An innovative solution strategy based on the System-by-Design (SbD) paradigm is proposed for the computationally-efficient exploitation of a global optimization strategy for minimizing the data mismatch cost function. Towards this end, a suitable selection, customization, and interconnection of SbD functional blocks is adopted. Moreover, the computationally-unaffordable repeated evaluation of each trial solution during the optimization is bypassed thanks to the exploitation of a digital twin (DT) based on the learning-by-examples (LBE) paradigm. An illustrative numerical example is shown to prove the effectiveness and computational efficiency of the proposed solution strategy when dealing with 2D free-space microwave imaging (MI) scenarios.","PeriodicalId":228461,"journal":{"name":"2022 16th European Conference on Antennas and Propagation (EuCAP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Assisted Global Optimization for Solving Inverse Scattering Problems\",\"authors\":\"M. Salucci, L. Poli, P. Rocca\",\"doi\":\"10.23919/eucap53622.2022.9769539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of inverse scattering (IS) problems supported by artificial intelligence (AI) is addressed. An innovative solution strategy based on the System-by-Design (SbD) paradigm is proposed for the computationally-efficient exploitation of a global optimization strategy for minimizing the data mismatch cost function. Towards this end, a suitable selection, customization, and interconnection of SbD functional blocks is adopted. Moreover, the computationally-unaffordable repeated evaluation of each trial solution during the optimization is bypassed thanks to the exploitation of a digital twin (DT) based on the learning-by-examples (LBE) paradigm. An illustrative numerical example is shown to prove the effectiveness and computational efficiency of the proposed solution strategy when dealing with 2D free-space microwave imaging (MI) scenarios.\",\"PeriodicalId\":228461,\"journal\":{\"name\":\"2022 16th European Conference on Antennas and Propagation (EuCAP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th European Conference on Antennas and Propagation (EuCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eucap53622.2022.9769539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eucap53622.2022.9769539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI-Assisted Global Optimization for Solving Inverse Scattering Problems
The solution of inverse scattering (IS) problems supported by artificial intelligence (AI) is addressed. An innovative solution strategy based on the System-by-Design (SbD) paradigm is proposed for the computationally-efficient exploitation of a global optimization strategy for minimizing the data mismatch cost function. Towards this end, a suitable selection, customization, and interconnection of SbD functional blocks is adopted. Moreover, the computationally-unaffordable repeated evaluation of each trial solution during the optimization is bypassed thanks to the exploitation of a digital twin (DT) based on the learning-by-examples (LBE) paradigm. An illustrative numerical example is shown to prove the effectiveness and computational efficiency of the proposed solution strategy when dealing with 2D free-space microwave imaging (MI) scenarios.