已实现波动率测度的向量异质自回归指数模型

CEIS: Finance Pub Date : 2016-07-22 DOI:10.2139/ssrn.2813310
G. Cubadda, B. Guardabascio, Alain Hecq
{"title":"已实现波动率测度的向量异质自回归指数模型","authors":"G. Cubadda, B. Guardabascio, Alain Hecq","doi":"10.2139/ssrn.2813310","DOIUrl":null,"url":null,"abstract":"This paper introduces a new model for detecting the presence of commonalities in a set of realized volatility measures. In particular, we propose a multivariate generalization of the heterogeneous autoregressive model (HAR) that is endowed with a common index structure. The vector heterogeneous autoregressive index model has the property of generating a common index that preserves the same temporal cascade structure as in the HAR model, a feature that is not shared by other aggregation methods (e.g., principal components). The parameters of this model can be estimated easily by a proper switching algorithm that increases the Gaussian likelihood at each step. We illustrate our approach using an empirical analysis that aims to combine several realized volatility measures of the same equity index for three different markets.","PeriodicalId":285963,"journal":{"name":"CEIS: Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A Vector Heterogeneous Autoregressive Index Model for Realized Volatility Measures\",\"authors\":\"G. Cubadda, B. Guardabascio, Alain Hecq\",\"doi\":\"10.2139/ssrn.2813310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new model for detecting the presence of commonalities in a set of realized volatility measures. In particular, we propose a multivariate generalization of the heterogeneous autoregressive model (HAR) that is endowed with a common index structure. The vector heterogeneous autoregressive index model has the property of generating a common index that preserves the same temporal cascade structure as in the HAR model, a feature that is not shared by other aggregation methods (e.g., principal components). The parameters of this model can be estimated easily by a proper switching algorithm that increases the Gaussian likelihood at each step. We illustrate our approach using an empirical analysis that aims to combine several realized volatility measures of the same equity index for three different markets.\",\"PeriodicalId\":285963,\"journal\":{\"name\":\"CEIS: Finance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2813310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2813310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文介绍了一种新的模型,用于检测一组已实现的波动率度量中是否存在共性。特别地,我们提出了具有共同索引结构的异构自回归模型(HAR)的多元泛化。矢量异质自回归指数模型具有生成公共索引的特性,该索引保留了HAR模型中相同的时间级联结构,这是其他聚合方法(例如主成分)所不具有的特征。通过适当的切换算法,增加每一步的高斯似然,可以很容易地估计出该模型的参数。我们使用实证分析来说明我们的方法,该分析旨在结合三个不同市场的同一股票指数的几个已实现波动率指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Vector Heterogeneous Autoregressive Index Model for Realized Volatility Measures
This paper introduces a new model for detecting the presence of commonalities in a set of realized volatility measures. In particular, we propose a multivariate generalization of the heterogeneous autoregressive model (HAR) that is endowed with a common index structure. The vector heterogeneous autoregressive index model has the property of generating a common index that preserves the same temporal cascade structure as in the HAR model, a feature that is not shared by other aggregation methods (e.g., principal components). The parameters of this model can be estimated easily by a proper switching algorithm that increases the Gaussian likelihood at each step. We illustrate our approach using an empirical analysis that aims to combine several realized volatility measures of the same equity index for three different markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信