{"title":"PAN 2023上的ARC-NLP:触发检测的分层长文本分类","authors":"Umitcan Sahin, Izzet Emre Kucukkaya, Cagri Toraman","doi":"10.48550/arXiv.2307.14912","DOIUrl":null,"url":null,"abstract":"Fanfiction, a popular form of creative writing set within established fictional universes, has gained a substantial online following. However, ensuring the well-being and safety of participants has become a critical concern in this community. The detection of triggering content, material that may cause emotional distress or trauma to readers, poses a significant challenge. In this paper, we describe our approach for the Trigger Detection shared task at PAN CLEF 2023, where we want to detect multiple triggering content in a given Fanfiction document. For this, we build a hierarchical model that uses recurrence over Transformer-based language models. In our approach, we first split long documents into smaller sized segments and use them to fine-tune a Transformer model. Then, we extract feature embeddings from the fine-tuned Transformer model, which are used as input in the training of multiple LSTM models for trigger detection in a multi-label setting. Our model achieves an F1-macro score of 0.372 and F1-micro score of 0.736 on the validation set, which are higher than the baseline results shared at PAN CLEF 2023.","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ARC-NLP at PAN 2023: Hierarchical Long Text Classification for Trigger Detection\",\"authors\":\"Umitcan Sahin, Izzet Emre Kucukkaya, Cagri Toraman\",\"doi\":\"10.48550/arXiv.2307.14912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fanfiction, a popular form of creative writing set within established fictional universes, has gained a substantial online following. However, ensuring the well-being and safety of participants has become a critical concern in this community. The detection of triggering content, material that may cause emotional distress or trauma to readers, poses a significant challenge. In this paper, we describe our approach for the Trigger Detection shared task at PAN CLEF 2023, where we want to detect multiple triggering content in a given Fanfiction document. For this, we build a hierarchical model that uses recurrence over Transformer-based language models. In our approach, we first split long documents into smaller sized segments and use them to fine-tune a Transformer model. Then, we extract feature embeddings from the fine-tuned Transformer model, which are used as input in the training of multiple LSTM models for trigger detection in a multi-label setting. Our model achieves an F1-macro score of 0.372 and F1-micro score of 0.736 on the validation set, which are higher than the baseline results shared at PAN CLEF 2023.\",\"PeriodicalId\":232729,\"journal\":{\"name\":\"Conference and Labs of the Evaluation Forum\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference and Labs of the Evaluation Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.14912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.14912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ARC-NLP at PAN 2023: Hierarchical Long Text Classification for Trigger Detection
Fanfiction, a popular form of creative writing set within established fictional universes, has gained a substantial online following. However, ensuring the well-being and safety of participants has become a critical concern in this community. The detection of triggering content, material that may cause emotional distress or trauma to readers, poses a significant challenge. In this paper, we describe our approach for the Trigger Detection shared task at PAN CLEF 2023, where we want to detect multiple triggering content in a given Fanfiction document. For this, we build a hierarchical model that uses recurrence over Transformer-based language models. In our approach, we first split long documents into smaller sized segments and use them to fine-tune a Transformer model. Then, we extract feature embeddings from the fine-tuned Transformer model, which are used as input in the training of multiple LSTM models for trigger detection in a multi-label setting. Our model achieves an F1-macro score of 0.372 and F1-micro score of 0.736 on the validation set, which are higher than the baseline results shared at PAN CLEF 2023.