分数牛顿-拉夫森法

F. Paz, Torres Hernandez Anthony
{"title":"分数牛顿-拉夫森法","authors":"F. Paz, Torres Hernandez Anthony","doi":"10.5121/mathsj.2021.8101","DOIUrl":null,"url":null,"abstract":"The Newton-Raphson (N-R) method is useful to find the roots of a polynomial of degree n, with n ∈ N. However, this method is limited since it diverges for the case in which polynomials only have complex roots if a real initial condition is taken. In the present work, we explain an iterative method that is created using the fractional calculus, which we will call the Fractional Newton-Raphson (F N-R) Method, which has the ability to enter the space of complex numbers given a real initial condition, which allows us to find both the real and complex roots of a polynomial unlike the classical Newton-Raphson method.","PeriodicalId":276601,"journal":{"name":"Applied Mathematics and Sciences An International Journal (MathSJ)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Fractional Newton-Raphson Method\",\"authors\":\"F. Paz, Torres Hernandez Anthony\",\"doi\":\"10.5121/mathsj.2021.8101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Newton-Raphson (N-R) method is useful to find the roots of a polynomial of degree n, with n ∈ N. However, this method is limited since it diverges for the case in which polynomials only have complex roots if a real initial condition is taken. In the present work, we explain an iterative method that is created using the fractional calculus, which we will call the Fractional Newton-Raphson (F N-R) Method, which has the ability to enter the space of complex numbers given a real initial condition, which allows us to find both the real and complex roots of a polynomial unlike the classical Newton-Raphson method.\",\"PeriodicalId\":276601,\"journal\":{\"name\":\"Applied Mathematics and Sciences An International Journal (MathSJ)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Sciences An International Journal (MathSJ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/mathsj.2021.8101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Sciences An International Journal (MathSJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mathsj.2021.8101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

Newton-Raphson (n- r)方法对于求n次多项式(n∈n)的根是有用的,但是对于多项式只有复数根的情况,如果取实初始条件,该方法是发散的,因此有局限性。在目前的工作中,我们解释了一种使用分数阶微积分创建的迭代方法,我们将其称为分数阶牛顿-拉夫森(F N-R)方法,该方法能够在给定实初始条件的情况下进入复数空间,这使我们能够找到多项式的实根和复根,而不像经典的牛顿-拉夫森方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Newton-Raphson Method
The Newton-Raphson (N-R) method is useful to find the roots of a polynomial of degree n, with n ∈ N. However, this method is limited since it diverges for the case in which polynomials only have complex roots if a real initial condition is taken. In the present work, we explain an iterative method that is created using the fractional calculus, which we will call the Fractional Newton-Raphson (F N-R) Method, which has the ability to enter the space of complex numbers given a real initial condition, which allows us to find both the real and complex roots of a polynomial unlike the classical Newton-Raphson method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信