{"title":"用于人胚胎干细胞培养的纳米多孔膜包封饲养细胞","authors":"Jing Zhou, R. Xu, Yong Wang","doi":"10.1504/IJFIPM.2009.022838","DOIUrl":null,"url":null,"abstract":"Current methods for the extended culture of human embryonic stem cells (hESCs) are far from optimal. Therefore, we proposed to use nanoporous membrane for the co-culture of feeder cells and hESCs. In this proof-of-concept study, we first studied the stability, biocompatibility and permeability of an alginate-poly-L-lysine-alginate membrane. This membrane was then used to encapsulate feeder cells to examine the cell viability and TGF-β secretion. Finally, the encapsulated feeder-conditioned media were used to culture hESCs. The data indicate that nanoporous membrane is a potential tool for the co-culture of feeder cells and hESCs in a safe, efficient, and continuous manner.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanoporous membrane-encapsulated feeder cells for culture of human embryonic stem cells\",\"authors\":\"Jing Zhou, R. Xu, Yong Wang\",\"doi\":\"10.1504/IJFIPM.2009.022838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current methods for the extended culture of human embryonic stem cells (hESCs) are far from optimal. Therefore, we proposed to use nanoporous membrane for the co-culture of feeder cells and hESCs. In this proof-of-concept study, we first studied the stability, biocompatibility and permeability of an alginate-poly-L-lysine-alginate membrane. This membrane was then used to encapsulate feeder cells to examine the cell viability and TGF-β secretion. Finally, the encapsulated feeder-conditioned media were used to culture hESCs. The data indicate that nanoporous membrane is a potential tool for the co-culture of feeder cells and hESCs in a safe, efficient, and continuous manner.\",\"PeriodicalId\":216126,\"journal\":{\"name\":\"Int. J. Funct. Informatics Pers. Medicine\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Funct. Informatics Pers. Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFIPM.2009.022838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2009.022838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoporous membrane-encapsulated feeder cells for culture of human embryonic stem cells
Current methods for the extended culture of human embryonic stem cells (hESCs) are far from optimal. Therefore, we proposed to use nanoporous membrane for the co-culture of feeder cells and hESCs. In this proof-of-concept study, we first studied the stability, biocompatibility and permeability of an alginate-poly-L-lysine-alginate membrane. This membrane was then used to encapsulate feeder cells to examine the cell viability and TGF-β secretion. Finally, the encapsulated feeder-conditioned media were used to culture hESCs. The data indicate that nanoporous membrane is a potential tool for the co-culture of feeder cells and hESCs in a safe, efficient, and continuous manner.