Xiaoshuang Sang, Qinghua Zhao, Hong Lu, Jianfeng Lu
{"title":"基于改进模糊c均值聚类算法的加权模糊时间序列预测","authors":"Xiaoshuang Sang, Qinghua Zhao, Hong Lu, Jianfeng Lu","doi":"10.1109/PIC.2018.8706278","DOIUrl":null,"url":null,"abstract":"A novel method for fuzzy time series (FTS) forecasting is presented based on improved fuzzy C-means clustering algorithm (IFCM) and first-order difference. Traditional forecasting approaches have weighted the central values of fuzzy intervals corresponding to fuzzy sets, but the central values may not be accurate enough since the assumed membership functions may be different. To avoid the problem of even distribution, in this paper, we weight the cluster centers derived from IFCM that defines the initial cluster centers of traditional fuzzy C-means clustering algorithm (FCM). There are many unstable characteristics in the time series forecasting model. To eliminate the fluctuation tendency of unstable characteristics, the first-order difference is used as the smooth time sequence to observe. Our experimental results on Alabama University enrollments and Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) demonstrate that the effectiveness and superiority of the proposed forecasting approach, in this paper, which gets higher forecasting accuracy than state-of-the-art methods.","PeriodicalId":236106,"journal":{"name":"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Weighted fuzzy time series forecasting based on improved fuzzy C-means clustering algorithm\",\"authors\":\"Xiaoshuang Sang, Qinghua Zhao, Hong Lu, Jianfeng Lu\",\"doi\":\"10.1109/PIC.2018.8706278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method for fuzzy time series (FTS) forecasting is presented based on improved fuzzy C-means clustering algorithm (IFCM) and first-order difference. Traditional forecasting approaches have weighted the central values of fuzzy intervals corresponding to fuzzy sets, but the central values may not be accurate enough since the assumed membership functions may be different. To avoid the problem of even distribution, in this paper, we weight the cluster centers derived from IFCM that defines the initial cluster centers of traditional fuzzy C-means clustering algorithm (FCM). There are many unstable characteristics in the time series forecasting model. To eliminate the fluctuation tendency of unstable characteristics, the first-order difference is used as the smooth time sequence to observe. Our experimental results on Alabama University enrollments and Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) demonstrate that the effectiveness and superiority of the proposed forecasting approach, in this paper, which gets higher forecasting accuracy than state-of-the-art methods.\",\"PeriodicalId\":236106,\"journal\":{\"name\":\"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2018.8706278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2018.8706278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted fuzzy time series forecasting based on improved fuzzy C-means clustering algorithm
A novel method for fuzzy time series (FTS) forecasting is presented based on improved fuzzy C-means clustering algorithm (IFCM) and first-order difference. Traditional forecasting approaches have weighted the central values of fuzzy intervals corresponding to fuzzy sets, but the central values may not be accurate enough since the assumed membership functions may be different. To avoid the problem of even distribution, in this paper, we weight the cluster centers derived from IFCM that defines the initial cluster centers of traditional fuzzy C-means clustering algorithm (FCM). There are many unstable characteristics in the time series forecasting model. To eliminate the fluctuation tendency of unstable characteristics, the first-order difference is used as the smooth time sequence to observe. Our experimental results on Alabama University enrollments and Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) demonstrate that the effectiveness and superiority of the proposed forecasting approach, in this paper, which gets higher forecasting accuracy than state-of-the-art methods.