EGC和MRC分集接收机在α-μ衰落下误差概率的新简单界限

Moataz M. H. El Ayadi, M. H. Ismail
{"title":"EGC和MRC分集接收机在α-μ衰落下误差概率的新简单界限","authors":"Moataz M. H. El Ayadi, M. H. Ismail","doi":"10.1109/ICTEL.2013.6632144","DOIUrl":null,"url":null,"abstract":"In this paper, we propose novel simple-to-calculate lower and upper bounds on the probability of error for dual-branch equal-gain combining (EGC) and maximal ratio combining (MRC) diversity receivers with α-μ fading and linear modulations. For deriving such bounds, we derive lower and upper bounds for the cumulative distribution function (CDF) of the sum of two independent and non identically distributed α-μ random variables (RVs). The CDF bounds are given in the form of finite series of normalized incomplete Gamma functions and, unlike many in the literature, do not require any look up tables or solving transcendental equations to be obtained. We present extensive numerical results for different combinations of the parameters α and μ and show that the proposed bounds on the CDF and the probability of error are very tight when compared to the exact quantities.","PeriodicalId":430600,"journal":{"name":"ICT 2013","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel simple bounds on the probability of error for EGC and MRC diversity receivers over α-μ fading\",\"authors\":\"Moataz M. H. El Ayadi, M. H. Ismail\",\"doi\":\"10.1109/ICTEL.2013.6632144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose novel simple-to-calculate lower and upper bounds on the probability of error for dual-branch equal-gain combining (EGC) and maximal ratio combining (MRC) diversity receivers with α-μ fading and linear modulations. For deriving such bounds, we derive lower and upper bounds for the cumulative distribution function (CDF) of the sum of two independent and non identically distributed α-μ random variables (RVs). The CDF bounds are given in the form of finite series of normalized incomplete Gamma functions and, unlike many in the literature, do not require any look up tables or solving transcendental equations to be obtained. We present extensive numerical results for different combinations of the parameters α and μ and show that the proposed bounds on the CDF and the probability of error are very tight when compared to the exact quantities.\",\"PeriodicalId\":430600,\"journal\":{\"name\":\"ICT 2013\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTEL.2013.6632144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEL.2013.6632144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了具有α-μ衰落和线性调制的双支路等增益组合(EGC)和最大比组合(MRC)分集接收机的误差概率的新的易于计算的下界和上界。为了推导这类边界,我们推导了两个独立非同分布α-μ随机变量(RVs)和的累积分布函数(CDF)的下界和上界。CDF边界以归一化不完全伽马函数的有限级数的形式给出,并且与许多文献不同,它不需要任何查找表或求解超越方程来获得。我们对参数α和μ的不同组合给出了广泛的数值结果,并表明与精确量相比,所提出的CDF边界和误差概率非常紧密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel simple bounds on the probability of error for EGC and MRC diversity receivers over α-μ fading
In this paper, we propose novel simple-to-calculate lower and upper bounds on the probability of error for dual-branch equal-gain combining (EGC) and maximal ratio combining (MRC) diversity receivers with α-μ fading and linear modulations. For deriving such bounds, we derive lower and upper bounds for the cumulative distribution function (CDF) of the sum of two independent and non identically distributed α-μ random variables (RVs). The CDF bounds are given in the form of finite series of normalized incomplete Gamma functions and, unlike many in the literature, do not require any look up tables or solving transcendental equations to be obtained. We present extensive numerical results for different combinations of the parameters α and μ and show that the proposed bounds on the CDF and the probability of error are very tight when compared to the exact quantities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信