基于反向注意机制的盐丘识别算法研究

Li Lou, Fengxi Zhang, Boxun Han
{"title":"基于反向注意机制的盐丘识别算法研究","authors":"Li Lou, Fengxi Zhang, Boxun Han","doi":"10.1117/12.2655333","DOIUrl":null,"url":null,"abstract":"In view of the strong subjectivity of traditional salt dome recognition methods and the poor effect of existing deep learning algorithms on salt dome edge recognition, this paper proposes a salt dome recognition algorithm based on reverse attention mechanism, which uses u-net model as the backbone network, adds reverse attention module at the jump connection to extract edge structure information, and finally uses feature splicing to fuse feature information to improve the segmentation performance of network model. Experimental results show that the network achieves good results in salt dome segmentation, and effectively improves the problem of unclear edge segmentation.","PeriodicalId":312603,"journal":{"name":"Conference on Intelligent and Human-Computer Interaction Technology","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on salt dome recognition algorithm based on reverse attention mechanism\",\"authors\":\"Li Lou, Fengxi Zhang, Boxun Han\",\"doi\":\"10.1117/12.2655333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the strong subjectivity of traditional salt dome recognition methods and the poor effect of existing deep learning algorithms on salt dome edge recognition, this paper proposes a salt dome recognition algorithm based on reverse attention mechanism, which uses u-net model as the backbone network, adds reverse attention module at the jump connection to extract edge structure information, and finally uses feature splicing to fuse feature information to improve the segmentation performance of network model. Experimental results show that the network achieves good results in salt dome segmentation, and effectively improves the problem of unclear edge segmentation.\",\"PeriodicalId\":312603,\"journal\":{\"name\":\"Conference on Intelligent and Human-Computer Interaction Technology\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Intelligent and Human-Computer Interaction Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2655333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Intelligent and Human-Computer Interaction Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2655333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统盐丘识别方法主观性强、现有深度学习算法对盐丘边缘识别效果不佳的问题,本文提出了一种基于反向注意机制的盐丘识别算法,该算法以u-net模型为骨干网络,在跳跃连接处增加反向注意模块提取边缘结构信息。最后利用特征拼接融合特征信息,提高网络模型的分割性能。实验结果表明,该网络在盐丘分割中取得了较好的效果,有效地改善了边缘分割不清的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on salt dome recognition algorithm based on reverse attention mechanism
In view of the strong subjectivity of traditional salt dome recognition methods and the poor effect of existing deep learning algorithms on salt dome edge recognition, this paper proposes a salt dome recognition algorithm based on reverse attention mechanism, which uses u-net model as the backbone network, adds reverse attention module at the jump connection to extract edge structure information, and finally uses feature splicing to fuse feature information to improve the segmentation performance of network model. Experimental results show that the network achieves good results in salt dome segmentation, and effectively improves the problem of unclear edge segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信