基于超像素和双阈值边缘跟踪的高分辨率遥感图像边缘检测方法

Yanxiong Liu, Zhipeng Dong, Yikai Feng, Yilan Chen, Long Yang
{"title":"基于超像素和双阈值边缘跟踪的高分辨率遥感图像边缘检测方法","authors":"Yanxiong Liu, Zhipeng Dong, Yikai Feng, Yilan Chen, Long Yang","doi":"10.14358/pers.23-00003r2","DOIUrl":null,"url":null,"abstract":"Edge detection in high-spatial-resolution remote sensing images (HSRIs ) is a key technology for automatic extraction, analysis, and understanding of image information. With respect to the problem of fake edges in image edge detection caused by image noise and the phenomenon of the\n same class objects reflecting different spectra, this article proposes a novel edge detection method for HSRIs by combin- ing superpixels with dual-threshold edge tracking. First, the image is smoothed using the simple linear iterative clustering algorithm to eliminate the influence of image\n noise and the phenomenon of the same class objects reflecting different spectra on image edge detec - tion. Second, initial edge detection results of the image are obtained using the dual-threshold edge tracking algorithm. Finally, the initial image edge detection results are post-processed\n by removing the burrs and extracting skeleton lines to obtain accurate edge detection results. The experimental results confirm that the proposed method outperforms the others and can obtain smooth, continuous, and single-pixel response edge detection results for HSRIs .","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Edge Detection Method for High-Resolution Remote Sensing Imagery by Combining Superpixels with Dual-Threshold Edge Tracking\",\"authors\":\"Yanxiong Liu, Zhipeng Dong, Yikai Feng, Yilan Chen, Long Yang\",\"doi\":\"10.14358/pers.23-00003r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge detection in high-spatial-resolution remote sensing images (HSRIs ) is a key technology for automatic extraction, analysis, and understanding of image information. With respect to the problem of fake edges in image edge detection caused by image noise and the phenomenon of the\\n same class objects reflecting different spectra, this article proposes a novel edge detection method for HSRIs by combin- ing superpixels with dual-threshold edge tracking. First, the image is smoothed using the simple linear iterative clustering algorithm to eliminate the influence of image\\n noise and the phenomenon of the same class objects reflecting different spectra on image edge detec - tion. Second, initial edge detection results of the image are obtained using the dual-threshold edge tracking algorithm. Finally, the initial image edge detection results are post-processed\\n by removing the burrs and extracting skeleton lines to obtain accurate edge detection results. The experimental results confirm that the proposed method outperforms the others and can obtain smooth, continuous, and single-pixel response edge detection results for HSRIs .\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00003r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00003r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高空间分辨率遥感图像的边缘检测是实现图像信息自动提取、分析和理解的关键技术。针对图像噪声和同一类物体反射不同光谱的现象导致图像边缘检测中出现假边缘的问题,提出了一种结合超像素和双阈值边缘跟踪的HSRIs边缘检测方法。首先,采用简单线性迭代聚类算法对图像进行平滑处理,消除图像噪声和同类物体反射不同光谱的现象对图像边缘检测的影响;其次,利用双阈值边缘跟踪算法获得图像的初始边缘检测结果;最后,对初始图像边缘检测结果进行后处理,去除毛刺,提取骨架线,得到准确的边缘检测结果。实验结果表明,该方法优于其他方法,可以获得平滑、连续、单像素响应的边缘检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Detection Method for High-Resolution Remote Sensing Imagery by Combining Superpixels with Dual-Threshold Edge Tracking
Edge detection in high-spatial-resolution remote sensing images (HSRIs ) is a key technology for automatic extraction, analysis, and understanding of image information. With respect to the problem of fake edges in image edge detection caused by image noise and the phenomenon of the same class objects reflecting different spectra, this article proposes a novel edge detection method for HSRIs by combin- ing superpixels with dual-threshold edge tracking. First, the image is smoothed using the simple linear iterative clustering algorithm to eliminate the influence of image noise and the phenomenon of the same class objects reflecting different spectra on image edge detec - tion. Second, initial edge detection results of the image are obtained using the dual-threshold edge tracking algorithm. Finally, the initial image edge detection results are post-processed by removing the burrs and extracting skeleton lines to obtain accurate edge detection results. The experimental results confirm that the proposed method outperforms the others and can obtain smooth, continuous, and single-pixel response edge detection results for HSRIs .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信