用于车辆检测的传感器节点数据的信号处理

Jiagen, Jason Ding, S. Cheung, Chin-Woo Tan, P. Varaiya
{"title":"用于车辆检测的传感器节点数据的信号处理","authors":"Jiagen, Jason Ding, S. Cheung, Chin-Woo Tan, P. Varaiya","doi":"10.1109/ITSC.2004.1398874","DOIUrl":null,"url":null,"abstract":"We describe an algorithm and experimental work for vehicle detection using sensor node data. Both acoustic and magnetic signals are processed for vehicle detection. We propose a real-time vehicle detection algorithm called the adaptive threshold algorithm (ATA). The algorithm first computes the time-domain energy distribution curve and then slices the energy curve using a threshold updated adaptively by some decision states. Finally, the hard decision results from threshold slicing are passed to a finite-state machine, which makes the final vehicle detection decision. Real-time tests and offline simulations both demonstrate that the proposed algorithm is effective.","PeriodicalId":239269,"journal":{"name":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Signal processing of sensor node data for vehicle detection\",\"authors\":\"Jiagen, Jason Ding, S. Cheung, Chin-Woo Tan, P. Varaiya\",\"doi\":\"10.1109/ITSC.2004.1398874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an algorithm and experimental work for vehicle detection using sensor node data. Both acoustic and magnetic signals are processed for vehicle detection. We propose a real-time vehicle detection algorithm called the adaptive threshold algorithm (ATA). The algorithm first computes the time-domain energy distribution curve and then slices the energy curve using a threshold updated adaptively by some decision states. Finally, the hard decision results from threshold slicing are passed to a finite-state machine, which makes the final vehicle detection decision. Real-time tests and offline simulations both demonstrate that the proposed algorithm is effective.\",\"PeriodicalId\":239269,\"journal\":{\"name\":\"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2004.1398874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2004.1398874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

我们描述了一种利用传感器节点数据进行车辆检测的算法和实验工作。声波和磁信号都经过处理用于车辆检测。我们提出了一种实时车辆检测算法,称为自适应阈值算法(ATA)。该算法首先计算时域能量分布曲线,然后利用一些决策状态自适应更新的阈值对能量曲线进行切片。最后,将阈值切片的硬决策结果传递给有限状态机,由有限状态机做出最终的车辆检测决策。实时测试和离线仿真均证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal processing of sensor node data for vehicle detection
We describe an algorithm and experimental work for vehicle detection using sensor node data. Both acoustic and magnetic signals are processed for vehicle detection. We propose a real-time vehicle detection algorithm called the adaptive threshold algorithm (ATA). The algorithm first computes the time-domain energy distribution curve and then slices the energy curve using a threshold updated adaptively by some decision states. Finally, the hard decision results from threshold slicing are passed to a finite-state machine, which makes the final vehicle detection decision. Real-time tests and offline simulations both demonstrate that the proposed algorithm is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信