有限域上函数代数中深度3算术电路的指数复杂度下界

D. Grigoriev, A. Razborov
{"title":"有限域上函数代数中深度3算术电路的指数复杂度下界","authors":"D. Grigoriev, A. Razborov","doi":"10.1109/SFCS.1998.743456","DOIUrl":null,"url":null,"abstract":"A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f: D/sup n//spl rarr/F for subsets D/spl sub/F. In particular, we prove an exponential lower bound on the complexity of a depth 3 arithmetic circuit which computes the determinant or the permanent of a matrix considered as functions f:(F*)n/sup 2//spl rarr/F.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Exponential complexity lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields\",\"authors\":\"D. Grigoriev, A. Razborov\",\"doi\":\"10.1109/SFCS.1998.743456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f: D/sup n//spl rarr/F for subsets D/spl sub/F. In particular, we prove an exponential lower bound on the complexity of a depth 3 arithmetic circuit which computes the determinant or the permanent of a matrix considered as functions f:(F*)n/sup 2//spl rarr/F.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

深度3算术电路可以看作是线性函数乘积的和。我们证明了在有限域f上计算一些自然对称函数的深度3算术电路的指数复杂度下界,并研究了函数f: D/sup n//spl rarr/ f对于子集D/spl sub/ f的复杂度。特别地,我们证明了一个计算矩阵的行列式或永久式的深度3算术电路的复杂度的指数下界,它被认为是函数f:(f *)n/sup 2//spl rarr/ f。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential complexity lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields
A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f: D/sup n//spl rarr/F for subsets D/spl sub/F. In particular, we prove an exponential lower bound on the complexity of a depth 3 arithmetic circuit which computes the determinant or the permanent of a matrix considered as functions f:(F*)n/sup 2//spl rarr/F.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信