一种小型探针存储装置样机的抖动研究与性能评价

A. Sebastian, A. Pantazi, H. Pozidis
{"title":"一种小型探针存储装置样机的抖动研究与性能评价","authors":"A. Sebastian, A. Pantazi, H. Pozidis","doi":"10.1109/GLOCOM.2007.61","DOIUrl":null,"url":null,"abstract":"MEMS-based scanning-probe data storage devices are emerging as potential ultra-high-density, low-access-time, and low-power alternatives to conventional data storage. Thermomechanical probe-based storage on thin polymer films is arguably the most advanced scanning-probe data storage scheme. The performance evaluation of a small-scale storage device prototype based on this concept is presented. The emphasis is on understanding the timing jitter in the read-back signals. Experiments are performed that confirm that the primary source of timing-jitter is the nanometer-scale perturbations of the micro-scanner while positioning the recording medium relative to the read/write transducers. Analytical estimates of these micro-scanner perturbations are obtained. An extensive performance evaluation, using the experimentally identified channel and medium-noise spectral characteristics, is conducted to study the impact of the microscanner perturbations on the performance of the storage device.","PeriodicalId":370937,"journal":{"name":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Jitter Investigation and Performance Evaluation of a Small-Scale Probe Storage Device Prototype\",\"authors\":\"A. Sebastian, A. Pantazi, H. Pozidis\",\"doi\":\"10.1109/GLOCOM.2007.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MEMS-based scanning-probe data storage devices are emerging as potential ultra-high-density, low-access-time, and low-power alternatives to conventional data storage. Thermomechanical probe-based storage on thin polymer films is arguably the most advanced scanning-probe data storage scheme. The performance evaluation of a small-scale storage device prototype based on this concept is presented. The emphasis is on understanding the timing jitter in the read-back signals. Experiments are performed that confirm that the primary source of timing-jitter is the nanometer-scale perturbations of the micro-scanner while positioning the recording medium relative to the read/write transducers. Analytical estimates of these micro-scanner perturbations are obtained. An extensive performance evaluation, using the experimentally identified channel and medium-noise spectral characteristics, is conducted to study the impact of the microscanner perturbations on the performance of the storage device.\",\"PeriodicalId\":370937,\"journal\":{\"name\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2007.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2007.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

基于mems的扫描探针数据存储设备正在成为传统数据存储的潜在超高密度、低访问时间和低功耗的替代品。基于热机械探针的聚合物薄膜存储可以说是最先进的扫描探针数据存储方案。给出了基于该概念的小型存储设备样机的性能评估。重点在于理解回读信号中的时序抖动。实验证实了时间抖动的主要来源是微扫描仪在定位记录介质相对于读/写换能器时的纳米级扰动。得到了这些微扫描仪扰动的分析估计。利用实验确定的通道和中噪声光谱特性,进行了广泛的性能评估,以研究微扫描仪扰动对存储器件性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jitter Investigation and Performance Evaluation of a Small-Scale Probe Storage Device Prototype
MEMS-based scanning-probe data storage devices are emerging as potential ultra-high-density, low-access-time, and low-power alternatives to conventional data storage. Thermomechanical probe-based storage on thin polymer films is arguably the most advanced scanning-probe data storage scheme. The performance evaluation of a small-scale storage device prototype based on this concept is presented. The emphasis is on understanding the timing jitter in the read-back signals. Experiments are performed that confirm that the primary source of timing-jitter is the nanometer-scale perturbations of the micro-scanner while positioning the recording medium relative to the read/write transducers. Analytical estimates of these micro-scanner perturbations are obtained. An extensive performance evaluation, using the experimentally identified channel and medium-noise spectral characteristics, is conducted to study the impact of the microscanner perturbations on the performance of the storage device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信