{"title":"关于测量问题","authors":"Raed M. Shaiia","doi":"10.5923/J.IJTMP.20140405.04","DOIUrl":null,"url":null,"abstract":"In this paper, we will see that we can reformulate the purely classical probability theory, using similar language to the one used in quantum mechanics. This leads us to reformulate quantum mechanics itself using this different way of understanding probability theory, which in turn will yield a new interpretation of quantum mechanics. In this reformulation, we still prove the existence of none classical phenomena of quantum mechanics, such as quantum superposition, quantum entanglement, the uncertainty principle and the collapse of the wave packet. But, here, we provide a different interpretation of these phenomena of how it is used to be understood in quantum physics. The advantages of this formulation and interpretation are that it induces the same experimental results, solves the measurement problem, and reduces the number of axioms in quantum mechanics. Besides, it suggests that we can use new types of Q-bits which are more easily to manipulate.","PeriodicalId":415446,"journal":{"name":"International Journal of Theoretical and Mathematical Physics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Measurement Problem\",\"authors\":\"Raed M. Shaiia\",\"doi\":\"10.5923/J.IJTMP.20140405.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will see that we can reformulate the purely classical probability theory, using similar language to the one used in quantum mechanics. This leads us to reformulate quantum mechanics itself using this different way of understanding probability theory, which in turn will yield a new interpretation of quantum mechanics. In this reformulation, we still prove the existence of none classical phenomena of quantum mechanics, such as quantum superposition, quantum entanglement, the uncertainty principle and the collapse of the wave packet. But, here, we provide a different interpretation of these phenomena of how it is used to be understood in quantum physics. The advantages of this formulation and interpretation are that it induces the same experimental results, solves the measurement problem, and reduces the number of axioms in quantum mechanics. Besides, it suggests that we can use new types of Q-bits which are more easily to manipulate.\",\"PeriodicalId\":415446,\"journal\":{\"name\":\"International Journal of Theoretical and Mathematical Physics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.IJTMP.20140405.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.IJTMP.20140405.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we will see that we can reformulate the purely classical probability theory, using similar language to the one used in quantum mechanics. This leads us to reformulate quantum mechanics itself using this different way of understanding probability theory, which in turn will yield a new interpretation of quantum mechanics. In this reformulation, we still prove the existence of none classical phenomena of quantum mechanics, such as quantum superposition, quantum entanglement, the uncertainty principle and the collapse of the wave packet. But, here, we provide a different interpretation of these phenomena of how it is used to be understood in quantum physics. The advantages of this formulation and interpretation are that it induces the same experimental results, solves the measurement problem, and reduces the number of axioms in quantum mechanics. Besides, it suggests that we can use new types of Q-bits which are more easily to manipulate.