面向人脸图像表示度量学习的图分组损失

Nakamasa Inoue
{"title":"面向人脸图像表示度量学习的图分组损失","authors":"Nakamasa Inoue","doi":"10.1109/VCIP49819.2020.9301861","DOIUrl":null,"url":null,"abstract":"This paper proposes Graph Grouping (GG) loss for metric learning and its application to face verification. GG loss predisposes image embeddings of the same identity to be close to each other, and those of different identities to be far from each other by constructing and optimizing graphs representing the relation between images. Further, to reduce the computational cost, we propose an efficient way to compute GG loss for cases where embeddings are L2 normalized. In experiments, we demonstrate the effectiveness of the proposed method for face verification on the VoxCeleb dataset. The results show that the proposed GG loss outperforms conventional losses for metric learning.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Grouping Loss for Metric Learning of Face Image Representations\",\"authors\":\"Nakamasa Inoue\",\"doi\":\"10.1109/VCIP49819.2020.9301861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes Graph Grouping (GG) loss for metric learning and its application to face verification. GG loss predisposes image embeddings of the same identity to be close to each other, and those of different identities to be far from each other by constructing and optimizing graphs representing the relation between images. Further, to reduce the computational cost, we propose an efficient way to compute GG loss for cases where embeddings are L2 normalized. In experiments, we demonstrate the effectiveness of the proposed method for face verification on the VoxCeleb dataset. The results show that the proposed GG loss outperforms conventional losses for metric learning.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了度量学习的图分组(GG)损失及其在人脸验证中的应用。GG损失通过构建和优化表示图像之间关系的图,使同一身份的图像嵌入彼此接近,不同身份的图像嵌入彼此远离。此外,为了降低计算成本,我们提出了一种有效的方法来计算L2归一化嵌入的GG损失。在实验中,我们证明了该方法在VoxCeleb数据集上进行人脸验证的有效性。结果表明,所提出的GG损失优于传统的度量学习损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Grouping Loss for Metric Learning of Face Image Representations
This paper proposes Graph Grouping (GG) loss for metric learning and its application to face verification. GG loss predisposes image embeddings of the same identity to be close to each other, and those of different identities to be far from each other by constructing and optimizing graphs representing the relation between images. Further, to reduce the computational cost, we propose an efficient way to compute GG loss for cases where embeddings are L2 normalized. In experiments, we demonstrate the effectiveness of the proposed method for face verification on the VoxCeleb dataset. The results show that the proposed GG loss outperforms conventional losses for metric learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信