基于方面的深度神经网络金融情绪分析

E. Shijia, Li Yang, Mohan Zhang, Yang Xiang
{"title":"基于方面的深度神经网络金融情绪分析","authors":"E. Shijia, Li Yang, Mohan Zhang, Yang Xiang","doi":"10.1145/3184558.3191825","DOIUrl":null,"url":null,"abstract":"Aspect-based financial sentiment analysis, which aims to classify the text instance into a pre-defined aspect class and predict the sentiment score for the mentioned target. In this paper, we propose a neural network model, Attention-based LSTM model with the Aspect information (ALA), to solve the financial opinion mining problem introduced by the WWW 2018 shared task. The proposed neural network model can adapt to the financial dataset so that the neural network can effectively understand the semantic information of the short text. We evaluate our model with the 10-fold cross-validation, and we compare our model with a variety of related deep neural network models.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Aspect-based Financial Sentiment Analysis with Deep Neural Networks\",\"authors\":\"E. Shijia, Li Yang, Mohan Zhang, Yang Xiang\",\"doi\":\"10.1145/3184558.3191825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-based financial sentiment analysis, which aims to classify the text instance into a pre-defined aspect class and predict the sentiment score for the mentioned target. In this paper, we propose a neural network model, Attention-based LSTM model with the Aspect information (ALA), to solve the financial opinion mining problem introduced by the WWW 2018 shared task. The proposed neural network model can adapt to the financial dataset so that the neural network can effectively understand the semantic information of the short text. We evaluate our model with the 10-fold cross-validation, and we compare our model with a variety of related deep neural network models.\",\"PeriodicalId\":235572,\"journal\":{\"name\":\"Companion Proceedings of the The Web Conference 2018\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the The Web Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184558.3191825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于方面的金融情绪分析,其目的是将文本实例分类到预定义的方面类中,并预测所提到目标的情绪得分。为了解决WWW 2018共享任务带来的财务意见挖掘问题,我们提出了一种神经网络模型——基于关注的LSTM模型,并引入了方面信息(Aspect information, ALA)。所提出的神经网络模型能够适应金融数据集,使神经网络能够有效地理解短文本的语义信息。我们用10倍交叉验证来评估我们的模型,并将我们的模型与各种相关的深度神经网络模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect-based Financial Sentiment Analysis with Deep Neural Networks
Aspect-based financial sentiment analysis, which aims to classify the text instance into a pre-defined aspect class and predict the sentiment score for the mentioned target. In this paper, we propose a neural network model, Attention-based LSTM model with the Aspect information (ALA), to solve the financial opinion mining problem introduced by the WWW 2018 shared task. The proposed neural network model can adapt to the financial dataset so that the neural network can effectively understand the semantic information of the short text. We evaluate our model with the 10-fold cross-validation, and we compare our model with a variety of related deep neural network models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信