基于随机计算的深度神经网络激活函数的有效硬件实现

Van-Tinh Nguyen, Tieu-Khanh Luong, Han Le Duc, Van‐Phuc Hoang
{"title":"基于随机计算的深度神经网络激活函数的有效硬件实现","authors":"Van-Tinh Nguyen, Tieu-Khanh Luong, Han Le Duc, Van‐Phuc Hoang","doi":"10.1109/MCSoC2018.2018.00045","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approximation method for non-linear activation functions including tanh and sigmoid functions using stochastic computing (SC) logic based on the piecewise-linear approximation (PWL) for the full range of [-1, 1]. SC implementations with PWL approximation expansions for non-linear functions are based on a 90nm CMOS process. The implementation results shown that the proposed SC circuits can provide better performance compared with the previous methods such as the well-known Maclaurin expansions based, Bernstein polynomial based and finite-state-machine (FSM) based implementations. The implementation results are also presented and discussed.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An Efficient Hardware Implementation of Activation Functions Using Stochastic Computing for Deep Neural Networks\",\"authors\":\"Van-Tinh Nguyen, Tieu-Khanh Luong, Han Le Duc, Van‐Phuc Hoang\",\"doi\":\"10.1109/MCSoC2018.2018.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new approximation method for non-linear activation functions including tanh and sigmoid functions using stochastic computing (SC) logic based on the piecewise-linear approximation (PWL) for the full range of [-1, 1]. SC implementations with PWL approximation expansions for non-linear functions are based on a 90nm CMOS process. The implementation results shown that the proposed SC circuits can provide better performance compared with the previous methods such as the well-known Maclaurin expansions based, Bernstein polynomial based and finite-state-machine (FSM) based implementations. The implementation results are also presented and discussed.\",\"PeriodicalId\":413836,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC2018.2018.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文利用随机计算(SC)逻辑,基于[- 1,1]全范围的分段线性逼近(PWL),提出了一种新的tanh和sigmoid函数非线性激活函数的逼近方法。SC实现与非线性函数的PWL近似展开是基于90纳米CMOS工艺。实现结果表明,与基于Maclaurin展开、基于Bernstein多项式和基于有限状态机(FSM)的实现方法相比,所提出的SC电路具有更好的性能。最后给出了实施结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Hardware Implementation of Activation Functions Using Stochastic Computing for Deep Neural Networks
In this paper, we present a new approximation method for non-linear activation functions including tanh and sigmoid functions using stochastic computing (SC) logic based on the piecewise-linear approximation (PWL) for the full range of [-1, 1]. SC implementations with PWL approximation expansions for non-linear functions are based on a 90nm CMOS process. The implementation results shown that the proposed SC circuits can provide better performance compared with the previous methods such as the well-known Maclaurin expansions based, Bernstein polynomial based and finite-state-machine (FSM) based implementations. The implementation results are also presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信