使用相对风险频率分布的多个流行病学研究的不确定性分析

A. Shlyakhter
{"title":"使用相对风险频率分布的多个流行病学研究的不确定性分析","authors":"A. Shlyakhter","doi":"10.1109/ISUMA.1995.527666","DOIUrl":null,"url":null,"abstract":"A new format for presenting uncertainty in the results of multiple epidemiologic studies of the same outcome is suggested. A set of 95% confidence intervals for relative risk, RR, is transformed to a frequency distribution of the normalized deviations, ln(RR)/SE(ln(RR)), from the null value In(RR)=0 (RR=1). It is assumed that deviations from RR=1 are due to unaccounted residual biases and we compare the distribution of these deviations with the distributions of the actual errors in physical measurements where the true values have subsequently become known, and the incidence of large errors can be estimated. Comparison of these distributions can, by analogy, help to understand how convincing is the evidence of elevated risk in observational studies.","PeriodicalId":298915,"journal":{"name":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Uncertainty analysis of multiple epidemiological studies using frequency distributions of relative risks\",\"authors\":\"A. Shlyakhter\",\"doi\":\"10.1109/ISUMA.1995.527666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new format for presenting uncertainty in the results of multiple epidemiologic studies of the same outcome is suggested. A set of 95% confidence intervals for relative risk, RR, is transformed to a frequency distribution of the normalized deviations, ln(RR)/SE(ln(RR)), from the null value In(RR)=0 (RR=1). It is assumed that deviations from RR=1 are due to unaccounted residual biases and we compare the distribution of these deviations with the distributions of the actual errors in physical measurements where the true values have subsequently become known, and the incidence of large errors can be estimated. Comparison of these distributions can, by analogy, help to understand how convincing is the evidence of elevated risk in observational studies.\",\"PeriodicalId\":298915,\"journal\":{\"name\":\"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISUMA.1995.527666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISUMA.1995.527666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的格式来表示同一结果的多个流行病学研究结果的不确定性。相对风险的95%置信区间RR从零值In(RR)=0 (RR=1)转换为归一化偏差的频率分布ln(RR)/SE(ln(RR))。假设偏离RR=1是由于未解释的残余偏差,我们将这些偏差的分布与物理测量中实际误差的分布进行比较,其中真实值随后已知,并且可以估计大误差的发生率。通过类比,比较这些分布可以帮助理解观察性研究中风险升高的证据有多么令人信服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty analysis of multiple epidemiological studies using frequency distributions of relative risks
A new format for presenting uncertainty in the results of multiple epidemiologic studies of the same outcome is suggested. A set of 95% confidence intervals for relative risk, RR, is transformed to a frequency distribution of the normalized deviations, ln(RR)/SE(ln(RR)), from the null value In(RR)=0 (RR=1). It is assumed that deviations from RR=1 are due to unaccounted residual biases and we compare the distribution of these deviations with the distributions of the actual errors in physical measurements where the true values have subsequently become known, and the incidence of large errors can be estimated. Comparison of these distributions can, by analogy, help to understand how convincing is the evidence of elevated risk in observational studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信