移动车辆的长期轨迹提取

Jie Xu, G. Ye, Jian Zhang
{"title":"移动车辆的长期轨迹提取","authors":"Jie Xu, G. Ye, Jian Zhang","doi":"10.1109/MMSP.2007.4412858","DOIUrl":null,"url":null,"abstract":"In recent years, trajectory analysis of moving vehicles in video-based traffic monitoring systems has drawn the attention of many researchers. Trajectory extraction is a fundamental step that is required prior to trajectory analysis. Lots of previous work have focused on trajectory extraction via tracking. However, they often fail to achieve long-term consistent trajectories. In this paper, we propose a robust approach for extracting long-term trajectories of moving vehicles in traffic monitoring using SIFT-descriptor. Experimental results show that the proposed method outperforms tracking-based techniques.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Long-term Trajectory Extraction for Moving Vehicles\",\"authors\":\"Jie Xu, G. Ye, Jian Zhang\",\"doi\":\"10.1109/MMSP.2007.4412858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, trajectory analysis of moving vehicles in video-based traffic monitoring systems has drawn the attention of many researchers. Trajectory extraction is a fundamental step that is required prior to trajectory analysis. Lots of previous work have focused on trajectory extraction via tracking. However, they often fail to achieve long-term consistent trajectories. In this paper, we propose a robust approach for extracting long-term trajectories of moving vehicles in traffic monitoring using SIFT-descriptor. Experimental results show that the proposed method outperforms tracking-based techniques.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,基于视频的交通监控系统中运动车辆的轨迹分析受到了许多研究者的关注。轨迹提取是进行轨迹分析之前的一个基本步骤。以前的许多工作都集中在通过跟踪提取轨迹上。然而,它们往往无法实现长期一致的轨迹。在本文中,我们提出了一种鲁棒的方法来提取移动车辆在交通监控中的长期轨迹使用sift描述符。实验结果表明,该方法优于基于跟踪的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term Trajectory Extraction for Moving Vehicles
In recent years, trajectory analysis of moving vehicles in video-based traffic monitoring systems has drawn the attention of many researchers. Trajectory extraction is a fundamental step that is required prior to trajectory analysis. Lots of previous work have focused on trajectory extraction via tracking. However, they often fail to achieve long-term consistent trajectories. In this paper, we propose a robust approach for extracting long-term trajectories of moving vehicles in traffic monitoring using SIFT-descriptor. Experimental results show that the proposed method outperforms tracking-based techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信